Evaluate
\frac{95}{137}\approx 0.693430657
Factor
\frac{5 \cdot 19}{137} = 0.6934306569343066
Share
Copied to clipboard
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{\frac{3}{2}+\frac{27}{5}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Divide 1 by \frac{\frac{2}{19}|\frac{\frac{3}{2}+\frac{27}{5}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}{\frac{5}{6}} by multiplying 1 by the reciprocal of \frac{\frac{2}{19}|\frac{\frac{3}{2}+\frac{27}{5}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}{\frac{5}{6}}.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{\frac{15}{10}+\frac{54}{10}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Least common multiple of 2 and 5 is 10. Convert \frac{3}{2} and \frac{27}{5} to fractions with denominator 10.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{\frac{15+54}{10}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Since \frac{15}{10} and \frac{54}{10} have the same denominator, add them by adding their numerators.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{\frac{69}{10}}{\frac{3}{5}}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Add 15 and 54 to get 69.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{69}{10}\times \frac{5}{3}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Divide \frac{69}{10} by \frac{3}{5} by multiplying \frac{69}{10} by the reciprocal of \frac{3}{5}.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{69\times 5}{10\times 3}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Multiply \frac{69}{10} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{345}{30}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Do the multiplications in the fraction \frac{69\times 5}{10\times 3}.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{23}{2}-\left(\frac{11}{6}-\frac{7}{4}\right)|}
Reduce the fraction \frac{345}{30} to lowest terms by extracting and canceling out 15.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{23}{2}-\left(\frac{22}{12}-\frac{21}{12}\right)|}
Least common multiple of 6 and 4 is 12. Convert \frac{11}{6} and \frac{7}{4} to fractions with denominator 12.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{23}{2}-\frac{22-21}{12}|}
Since \frac{22}{12} and \frac{21}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{23}{2}-\frac{1}{12}|}
Subtract 21 from 22 to get 1.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{138}{12}-\frac{1}{12}|}
Least common multiple of 2 and 12 is 12. Convert \frac{23}{2} and \frac{1}{12} to fractions with denominator 12.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{138-1}{12}|}
Since \frac{138}{12} and \frac{1}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{5}{6}}{\frac{2}{19}|\frac{137}{12}|}
Subtract 1 from 138 to get 137.
\frac{\frac{5}{6}}{\frac{2}{19}\times \frac{137}{12}}
The absolute value of a real number a is a when a\geq 0, or -a when a<0. The absolute value of \frac{137}{12} is \frac{137}{12}.
\frac{\frac{5}{6}}{\frac{2\times 137}{19\times 12}}
Multiply \frac{2}{19} times \frac{137}{12} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{5}{6}}{\frac{274}{228}}
Do the multiplications in the fraction \frac{2\times 137}{19\times 12}.
\frac{\frac{5}{6}}{\frac{137}{114}}
Reduce the fraction \frac{274}{228} to lowest terms by extracting and canceling out 2.
\frac{5}{6}\times \frac{114}{137}
Divide \frac{5}{6} by \frac{137}{114} by multiplying \frac{5}{6} by the reciprocal of \frac{137}{114}.
\frac{5\times 114}{6\times 137}
Multiply \frac{5}{6} times \frac{114}{137} by multiplying numerator times numerator and denominator times denominator.
\frac{570}{822}
Do the multiplications in the fraction \frac{5\times 114}{6\times 137}.
\frac{95}{137}
Reduce the fraction \frac{570}{822} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}