Solve for b
b = \frac{7}{2} = 3\frac{1}{2} = 3.5
Share
Copied to clipboard
\frac{1}{6}+\frac{6}{6}=\frac{1}{3}b
Convert 1 to fraction \frac{6}{6}.
\frac{1+6}{6}=\frac{1}{3}b
Since \frac{1}{6} and \frac{6}{6} have the same denominator, add them by adding their numerators.
\frac{7}{6}=\frac{1}{3}b
Add 1 and 6 to get 7.
\frac{1}{3}b=\frac{7}{6}
Swap sides so that all variable terms are on the left hand side.
b=\frac{7}{6}\times 3
Multiply both sides by 3, the reciprocal of \frac{1}{3}.
b=\frac{7\times 3}{6}
Express \frac{7}{6}\times 3 as a single fraction.
b=\frac{21}{6}
Multiply 7 and 3 to get 21.
b=\frac{7}{2}
Reduce the fraction \frac{21}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}