Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{2}x^{2}+2x-30=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times \frac{1}{2}\left(-30\right)}}{2\times \frac{1}{2}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{2} for a, 2 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times \frac{1}{2}\left(-30\right)}}{2\times \frac{1}{2}}
Square 2.
x=\frac{-2±\sqrt{4-2\left(-30\right)}}{2\times \frac{1}{2}}
Multiply -4 times \frac{1}{2}.
x=\frac{-2±\sqrt{4+60}}{2\times \frac{1}{2}}
Multiply -2 times -30.
x=\frac{-2±\sqrt{64}}{2\times \frac{1}{2}}
Add 4 to 60.
x=\frac{-2±8}{2\times \frac{1}{2}}
Take the square root of 64.
x=\frac{-2±8}{1}
Multiply 2 times \frac{1}{2}.
x=\frac{6}{1}
Now solve the equation x=\frac{-2±8}{1} when ± is plus. Add -2 to 8.
x=6
Divide 6 by 1.
x=-\frac{10}{1}
Now solve the equation x=\frac{-2±8}{1} when ± is minus. Subtract 8 from -2.
x=-10
Divide -10 by 1.
x=6 x=-10
The equation is now solved.
\frac{1}{2}x^{2}+2x-30=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{2}x^{2}+2x-30-\left(-30\right)=-\left(-30\right)
Add 30 to both sides of the equation.
\frac{1}{2}x^{2}+2x=-\left(-30\right)
Subtracting -30 from itself leaves 0.
\frac{1}{2}x^{2}+2x=30
Subtract -30 from 0.
\frac{\frac{1}{2}x^{2}+2x}{\frac{1}{2}}=\frac{30}{\frac{1}{2}}
Multiply both sides by 2.
x^{2}+\frac{2}{\frac{1}{2}}x=\frac{30}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
x^{2}+4x=\frac{30}{\frac{1}{2}}
Divide 2 by \frac{1}{2} by multiplying 2 by the reciprocal of \frac{1}{2}.
x^{2}+4x=60
Divide 30 by \frac{1}{2} by multiplying 30 by the reciprocal of \frac{1}{2}.
x^{2}+4x+2^{2}=60+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+4x+4=60+4
Square 2.
x^{2}+4x+4=64
Add 60 to 4.
\left(x+2\right)^{2}=64
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{64}
Take the square root of both sides of the equation.
x+2=8 x+2=-8
Simplify.
x=6 x=-10
Subtract 2 from both sides of the equation.