Solve for x
x = \frac{95}{6} = 15\frac{5}{6} \approx 15.833333333
Graph
Share
Copied to clipboard
\frac{5}{2}=3x-45
Multiply \frac{1}{2} and 5 to get \frac{5}{2}.
3x-45=\frac{5}{2}
Swap sides so that all variable terms are on the left hand side.
3x=\frac{5}{2}+45
Add 45 to both sides.
3x=\frac{5}{2}+\frac{90}{2}
Convert 45 to fraction \frac{90}{2}.
3x=\frac{5+90}{2}
Since \frac{5}{2} and \frac{90}{2} have the same denominator, add them by adding their numerators.
3x=\frac{95}{2}
Add 5 and 90 to get 95.
x=\frac{\frac{95}{2}}{3}
Divide both sides by 3.
x=\frac{95}{2\times 3}
Express \frac{\frac{95}{2}}{3} as a single fraction.
x=\frac{95}{6}
Multiply 2 and 3 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}