Evaluate
50\times \left(\frac{m}{s}\right)^{2}gk
Expand
50\times \left(\frac{m}{s}\right)^{2}gk
Share
Copied to clipboard
\frac{1}{2}\left(4kg\times \frac{\left(5m\right)^{2}}{s^{2}}+4kg\times 0^{2}\right)
To raise \frac{5m}{s} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{2}\left(\frac{4\times \left(5m\right)^{2}}{s^{2}}kg+4kg\times 0^{2}\right)
Express 4\times \frac{\left(5m\right)^{2}}{s^{2}} as a single fraction.
\frac{1}{2}\left(\frac{4\times \left(5m\right)^{2}}{s^{2}}kg+4kg\times 0\right)
Calculate 0 to the power of 2 and get 0.
\frac{1}{2}\left(\frac{4\times \left(5m\right)^{2}}{s^{2}}kg+0kg\right)
Multiply 4 and 0 to get 0.
\frac{1}{2}\left(\frac{4\times \left(5m\right)^{2}}{s^{2}}kg+0\right)
Anything times zero gives zero.
\frac{1}{2}\times \frac{4\times \left(5m\right)^{2}}{s^{2}}kg
Anything plus zero gives itself.
\frac{4\times \left(5m\right)^{2}}{2s^{2}}kg
Multiply \frac{1}{2} times \frac{4\times \left(5m\right)^{2}}{s^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{2\times \left(5m\right)^{2}}{s^{2}}kg
Cancel out 2 in both numerator and denominator.
\frac{2\times \left(5m\right)^{2}k}{s^{2}}g
Express \frac{2\times \left(5m\right)^{2}}{s^{2}}k as a single fraction.
\frac{2\times \left(5m\right)^{2}kg}{s^{2}}
Express \frac{2\times \left(5m\right)^{2}k}{s^{2}}g as a single fraction.
\frac{2\times 5^{2}m^{2}kg}{s^{2}}
Expand \left(5m\right)^{2}.
\frac{2\times 25m^{2}kg}{s^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{50m^{2}kg}{s^{2}}
Multiply 2 and 25 to get 50.
\frac{1}{2}\left(4kg\times \frac{\left(5m\right)^{2}}{s^{2}}+4kg\times 0^{2}\right)
To raise \frac{5m}{s} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{2}\left(\frac{4\times \left(5m\right)^{2}}{s^{2}}kg+4kg\times 0^{2}\right)
Express 4\times \frac{\left(5m\right)^{2}}{s^{2}} as a single fraction.
\frac{1}{2}\left(\frac{4\times \left(5m\right)^{2}}{s^{2}}kg+4kg\times 0\right)
Calculate 0 to the power of 2 and get 0.
\frac{1}{2}\left(\frac{4\times \left(5m\right)^{2}}{s^{2}}kg+0kg\right)
Multiply 4 and 0 to get 0.
\frac{1}{2}\left(\frac{4\times \left(5m\right)^{2}}{s^{2}}kg+0\right)
Anything times zero gives zero.
\frac{1}{2}\times \frac{4\times \left(5m\right)^{2}}{s^{2}}kg
Anything plus zero gives itself.
\frac{4\times \left(5m\right)^{2}}{2s^{2}}kg
Multiply \frac{1}{2} times \frac{4\times \left(5m\right)^{2}}{s^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{2\times \left(5m\right)^{2}}{s^{2}}kg
Cancel out 2 in both numerator and denominator.
\frac{2\times \left(5m\right)^{2}k}{s^{2}}g
Express \frac{2\times \left(5m\right)^{2}}{s^{2}}k as a single fraction.
\frac{2\times \left(5m\right)^{2}kg}{s^{2}}
Express \frac{2\times \left(5m\right)^{2}k}{s^{2}}g as a single fraction.
\frac{2\times 5^{2}m^{2}kg}{s^{2}}
Expand \left(5m\right)^{2}.
\frac{2\times 25m^{2}kg}{s^{2}}
Calculate 5 to the power of 2 and get 25.
\frac{50m^{2}kg}{s^{2}}
Multiply 2 and 25 to get 50.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}