Solve for m
m=\frac{3}{5}=0.6
Share
Copied to clipboard
\frac{5}{10}+\frac{9}{10}+m=2
Least common multiple of 2 and 10 is 10. Convert \frac{1}{2} and \frac{9}{10} to fractions with denominator 10.
\frac{5+9}{10}+m=2
Since \frac{5}{10} and \frac{9}{10} have the same denominator, add them by adding their numerators.
\frac{14}{10}+m=2
Add 5 and 9 to get 14.
\frac{7}{5}+m=2
Reduce the fraction \frac{14}{10} to lowest terms by extracting and canceling out 2.
m=2-\frac{7}{5}
Subtract \frac{7}{5} from both sides.
m=\frac{10}{5}-\frac{7}{5}
Convert 2 to fraction \frac{10}{5}.
m=\frac{10-7}{5}
Since \frac{10}{5} and \frac{7}{5} have the same denominator, subtract them by subtracting their numerators.
m=\frac{3}{5}
Subtract 7 from 10 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}