Solve for p
p=0
Share
Copied to clipboard
p-2=\left(p-1\right)\times 2
Variable p cannot be equal to any of the values 1,2 since division by zero is not defined. Multiply both sides of the equation by \left(p-2\right)\left(p-1\right), the least common multiple of p-1,p-2.
p-2=2p-2
Use the distributive property to multiply p-1 by 2.
p-2-2p=-2
Subtract 2p from both sides.
-p-2=-2
Combine p and -2p to get -p.
-p=-2+2
Add 2 to both sides.
-p=0
Add -2 and 2 to get 0.
p=0
Product of two numbers is equal to 0 if at least one of them is 0. Since -1 is not equal to 0, p must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}