Solve for x
x=\frac{7\sqrt{10}}{6}-\frac{7}{3}\approx 1.355990604
x=-\frac{7\sqrt{10}}{6}-\frac{7}{3}\approx -6.02265727
Graph
Share
Copied to clipboard
1=2\left(x+6\right)\left(3x-4\right)
Variable x cannot be equal to \frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by 3x-4.
1=\left(2x+12\right)\left(3x-4\right)
Use the distributive property to multiply 2 by x+6.
1=6x^{2}+28x-48
Use the distributive property to multiply 2x+12 by 3x-4 and combine like terms.
6x^{2}+28x-48=1
Swap sides so that all variable terms are on the left hand side.
6x^{2}+28x-48-1=0
Subtract 1 from both sides.
6x^{2}+28x-49=0
Subtract 1 from -48 to get -49.
x=\frac{-28±\sqrt{28^{2}-4\times 6\left(-49\right)}}{2\times 6}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 6 for a, 28 for b, and -49 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\times 6\left(-49\right)}}{2\times 6}
Square 28.
x=\frac{-28±\sqrt{784-24\left(-49\right)}}{2\times 6}
Multiply -4 times 6.
x=\frac{-28±\sqrt{784+1176}}{2\times 6}
Multiply -24 times -49.
x=\frac{-28±\sqrt{1960}}{2\times 6}
Add 784 to 1176.
x=\frac{-28±14\sqrt{10}}{2\times 6}
Take the square root of 1960.
x=\frac{-28±14\sqrt{10}}{12}
Multiply 2 times 6.
x=\frac{14\sqrt{10}-28}{12}
Now solve the equation x=\frac{-28±14\sqrt{10}}{12} when ± is plus. Add -28 to 14\sqrt{10}.
x=\frac{7\sqrt{10}}{6}-\frac{7}{3}
Divide -28+14\sqrt{10} by 12.
x=\frac{-14\sqrt{10}-28}{12}
Now solve the equation x=\frac{-28±14\sqrt{10}}{12} when ± is minus. Subtract 14\sqrt{10} from -28.
x=-\frac{7\sqrt{10}}{6}-\frac{7}{3}
Divide -28-14\sqrt{10} by 12.
x=\frac{7\sqrt{10}}{6}-\frac{7}{3} x=-\frac{7\sqrt{10}}{6}-\frac{7}{3}
The equation is now solved.
1=2\left(x+6\right)\left(3x-4\right)
Variable x cannot be equal to \frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by 3x-4.
1=\left(2x+12\right)\left(3x-4\right)
Use the distributive property to multiply 2 by x+6.
1=6x^{2}+28x-48
Use the distributive property to multiply 2x+12 by 3x-4 and combine like terms.
6x^{2}+28x-48=1
Swap sides so that all variable terms are on the left hand side.
6x^{2}+28x=1+48
Add 48 to both sides.
6x^{2}+28x=49
Add 1 and 48 to get 49.
\frac{6x^{2}+28x}{6}=\frac{49}{6}
Divide both sides by 6.
x^{2}+\frac{28}{6}x=\frac{49}{6}
Dividing by 6 undoes the multiplication by 6.
x^{2}+\frac{14}{3}x=\frac{49}{6}
Reduce the fraction \frac{28}{6} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{14}{3}x+\left(\frac{7}{3}\right)^{2}=\frac{49}{6}+\left(\frac{7}{3}\right)^{2}
Divide \frac{14}{3}, the coefficient of the x term, by 2 to get \frac{7}{3}. Then add the square of \frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{14}{3}x+\frac{49}{9}=\frac{49}{6}+\frac{49}{9}
Square \frac{7}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{14}{3}x+\frac{49}{9}=\frac{245}{18}
Add \frac{49}{6} to \frac{49}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{3}\right)^{2}=\frac{245}{18}
Factor x^{2}+\frac{14}{3}x+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{3}\right)^{2}}=\sqrt{\frac{245}{18}}
Take the square root of both sides of the equation.
x+\frac{7}{3}=\frac{7\sqrt{10}}{6} x+\frac{7}{3}=-\frac{7\sqrt{10}}{6}
Simplify.
x=\frac{7\sqrt{10}}{6}-\frac{7}{3} x=-\frac{7\sqrt{10}}{6}-\frac{7}{3}
Subtract \frac{7}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}