Evaluate
-\frac{4}{289}-\frac{15}{578}i\approx -0.01384083-0.025951557i
Real Part
-\frac{4}{289} = -0.01384083044982699
Share
Copied to clipboard
\frac{1}{\left(3+5i\right)^{2}}
Use the rules of exponents to simplify the expression.
\left(3+5i\right)^{2\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(3+5i\right)^{-2}
Multiply 2 times -1.
-\frac{4}{289}-\frac{15}{578}i
Raise 3+5i to the power -2.
Re(\frac{1}{-16+30i})
Calculate 3+5i to the power of 2 and get -16+30i.
Re(\frac{1\left(-16-30i\right)}{\left(-16+30i\right)\left(-16-30i\right)})
Multiply both numerator and denominator of \frac{1}{-16+30i} by the complex conjugate of the denominator, -16-30i.
Re(\frac{-16-30i}{1156})
Do the multiplications in \frac{1\left(-16-30i\right)}{\left(-16+30i\right)\left(-16-30i\right)}.
Re(-\frac{4}{289}-\frac{15}{578}i)
Divide -16-30i by 1156 to get -\frac{4}{289}-\frac{15}{578}i.
-\frac{4}{289}
The real part of -\frac{4}{289}-\frac{15}{578}i is -\frac{4}{289}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}