Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{\left(3+5i\right)^{2}}
Use the rules of exponents to simplify the expression.
\left(3+5i\right)^{2\left(-1\right)}
To raise a power to another power, multiply the exponents.
\left(3+5i\right)^{-2}
Multiply 2 times -1.
-\frac{4}{289}-\frac{15}{578}i
Raise 3+5i to the power -2.
Re(\frac{1}{-16+30i})
Calculate 3+5i to the power of 2 and get -16+30i.
Re(\frac{1\left(-16-30i\right)}{\left(-16+30i\right)\left(-16-30i\right)})
Multiply both numerator and denominator of \frac{1}{-16+30i} by the complex conjugate of the denominator, -16-30i.
Re(\frac{-16-30i}{1156})
Do the multiplications in \frac{1\left(-16-30i\right)}{\left(-16+30i\right)\left(-16-30i\right)}.
Re(-\frac{4}{289}-\frac{15}{578}i)
Divide -16-30i by 1156 to get -\frac{4}{289}-\frac{15}{578}i.
-\frac{4}{289}
The real part of -\frac{4}{289}-\frac{15}{578}i is -\frac{4}{289}.