Solve for x
x=y-\frac{1}{z^{2}}
z\neq 0
Solve for y
y=x+\frac{1}{z^{2}}
z\neq 0
Share
Copied to clipboard
1+z^{2}x-zzy=0
Multiply z and z to get z^{2}.
1+z^{2}x-z^{2}y=0
Multiply z and z to get z^{2}.
1+z^{2}x=0+z^{2}y
Add z^{2}y to both sides.
1+z^{2}x=z^{2}y
Anything plus zero gives itself.
z^{2}x=z^{2}y-1
Subtract 1 from both sides.
z^{2}x=yz^{2}-1
The equation is in standard form.
\frac{z^{2}x}{z^{2}}=\frac{yz^{2}-1}{z^{2}}
Divide both sides by z^{2}.
x=\frac{yz^{2}-1}{z^{2}}
Dividing by z^{2} undoes the multiplication by z^{2}.
x=y-\frac{1}{z^{2}}
Divide z^{2}y-1 by z^{2}.
1+z^{2}x-zzy=0
Multiply z and z to get z^{2}.
1+z^{2}x-z^{2}y=0
Multiply z and z to get z^{2}.
z^{2}x-z^{2}y=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
-z^{2}y=-1-z^{2}x
Subtract z^{2}x from both sides.
\left(-z^{2}\right)y=-xz^{2}-1
The equation is in standard form.
\frac{\left(-z^{2}\right)y}{-z^{2}}=\frac{-xz^{2}-1}{-z^{2}}
Divide both sides by -z^{2}.
y=\frac{-xz^{2}-1}{-z^{2}}
Dividing by -z^{2} undoes the multiplication by -z^{2}.
y=x+\frac{1}{z^{2}}
Divide -1-z^{2}x by -z^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}