Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

1+x^{2}-21x=0
Multiply 0 and 50565 to get 0.
x^{2}-21x+1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -21 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4}}{2}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{437}}{2}
Add 441 to -4.
x=\frac{21±\sqrt{437}}{2}
The opposite of -21 is 21.
x=\frac{\sqrt{437}+21}{2}
Now solve the equation x=\frac{21±\sqrt{437}}{2} when ± is plus. Add 21 to \sqrt{437}.
x=\frac{21-\sqrt{437}}{2}
Now solve the equation x=\frac{21±\sqrt{437}}{2} when ± is minus. Subtract \sqrt{437} from 21.
x=\frac{\sqrt{437}+21}{2} x=\frac{21-\sqrt{437}}{2}
The equation is now solved.
1+x^{2}-21x=0
Multiply 0 and 50565 to get 0.
x^{2}-21x=-1
Subtract 1 from both sides. Anything subtracted from zero gives its negation.
x^{2}-21x+\left(-\frac{21}{2}\right)^{2}=-1+\left(-\frac{21}{2}\right)^{2}
Divide -21, the coefficient of the x term, by 2 to get -\frac{21}{2}. Then add the square of -\frac{21}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-21x+\frac{441}{4}=-1+\frac{441}{4}
Square -\frac{21}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-21x+\frac{441}{4}=\frac{437}{4}
Add -1 to \frac{441}{4}.
\left(x-\frac{21}{2}\right)^{2}=\frac{437}{4}
Factor x^{2}-21x+\frac{441}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{21}{2}\right)^{2}}=\sqrt{\frac{437}{4}}
Take the square root of both sides of the equation.
x-\frac{21}{2}=\frac{\sqrt{437}}{2} x-\frac{21}{2}=-\frac{\sqrt{437}}{2}
Simplify.
x=\frac{\sqrt{437}+21}{2} x=\frac{21-\sqrt{437}}{2}
Add \frac{21}{2} to both sides of the equation.