Solve for x
x=\frac{\sqrt{1662}}{50}+1.05\approx 1.865352684
x=-\frac{\sqrt{1662}}{50}+1.05\approx 0.234647316
Graph
Share
Copied to clipboard
x^{2}-2.1x+1=0.5623
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x^{2}-2.1x+1-0.5623=0.5623-0.5623
Subtract 0.5623 from both sides of the equation.
x^{2}-2.1x+1-0.5623=0
Subtracting 0.5623 from itself leaves 0.
x^{2}-2.1x+0.4377=0
Subtract 0.5623 from 1.
x=\frac{-\left(-2.1\right)±\sqrt{\left(-2.1\right)^{2}-4\times 0.4377}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -2.1 for b, and 0.4377 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2.1\right)±\sqrt{4.41-4\times 0.4377}}{2}
Square -2.1 by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-2.1\right)±\sqrt{4.41-1.7508}}{2}
Multiply -4 times 0.4377.
x=\frac{-\left(-2.1\right)±\sqrt{2.6592}}{2}
Add 4.41 to -1.7508 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-2.1\right)±\frac{\sqrt{1662}}{25}}{2}
Take the square root of 2.6592.
x=\frac{2.1±\frac{\sqrt{1662}}{25}}{2}
The opposite of -2.1 is 2.1.
x=\frac{\frac{\sqrt{1662}}{25}+\frac{21}{10}}{2}
Now solve the equation x=\frac{2.1±\frac{\sqrt{1662}}{25}}{2} when ± is plus. Add 2.1 to \frac{\sqrt{1662}}{25}.
x=\frac{\sqrt{1662}}{50}+\frac{21}{20}
Divide \frac{21}{10}+\frac{\sqrt{1662}}{25} by 2.
x=\frac{-\frac{\sqrt{1662}}{25}+\frac{21}{10}}{2}
Now solve the equation x=\frac{2.1±\frac{\sqrt{1662}}{25}}{2} when ± is minus. Subtract \frac{\sqrt{1662}}{25} from 2.1.
x=-\frac{\sqrt{1662}}{50}+\frac{21}{20}
Divide \frac{21}{10}-\frac{\sqrt{1662}}{25} by 2.
x=\frac{\sqrt{1662}}{50}+\frac{21}{20} x=-\frac{\sqrt{1662}}{50}+\frac{21}{20}
The equation is now solved.
x^{2}-2.1x+1=0.5623
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}-2.1x+1-1=0.5623-1
Subtract 1 from both sides of the equation.
x^{2}-2.1x=0.5623-1
Subtracting 1 from itself leaves 0.
x^{2}-2.1x=-0.4377
Subtract 1 from 0.5623.
x^{2}-2.1x+\left(-1.05\right)^{2}=-0.4377+\left(-1.05\right)^{2}
Divide -2.1, the coefficient of the x term, by 2 to get -1.05. Then add the square of -1.05 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2.1x+1.1025=-0.4377+1.1025
Square -1.05 by squaring both the numerator and the denominator of the fraction.
x^{2}-2.1x+1.1025=0.6648
Add -0.4377 to 1.1025 by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-1.05\right)^{2}=0.6648
Factor x^{2}-2.1x+1.1025. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1.05\right)^{2}}=\sqrt{0.6648}
Take the square root of both sides of the equation.
x-1.05=\frac{\sqrt{1662}}{50} x-1.05=-\frac{\sqrt{1662}}{50}
Simplify.
x=\frac{\sqrt{1662}}{50}+\frac{21}{20} x=-\frac{\sqrt{1662}}{50}+\frac{21}{20}
Add 1.05 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}