Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

1+2a^{2}-55a+34=50
Combine a^{2} and a^{2} to get 2a^{2}.
35+2a^{2}-55a=50
Add 1 and 34 to get 35.
35+2a^{2}-55a-50=0
Subtract 50 from both sides.
-15+2a^{2}-55a=0
Subtract 50 from 35 to get -15.
2a^{2}-55a-15=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
a=\frac{-\left(-55\right)±\sqrt{\left(-55\right)^{2}-4\times 2\left(-15\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -55 for b, and -15 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-\left(-55\right)±\sqrt{3025-4\times 2\left(-15\right)}}{2\times 2}
Square -55.
a=\frac{-\left(-55\right)±\sqrt{3025-8\left(-15\right)}}{2\times 2}
Multiply -4 times 2.
a=\frac{-\left(-55\right)±\sqrt{3025+120}}{2\times 2}
Multiply -8 times -15.
a=\frac{-\left(-55\right)±\sqrt{3145}}{2\times 2}
Add 3025 to 120.
a=\frac{55±\sqrt{3145}}{2\times 2}
The opposite of -55 is 55.
a=\frac{55±\sqrt{3145}}{4}
Multiply 2 times 2.
a=\frac{\sqrt{3145}+55}{4}
Now solve the equation a=\frac{55±\sqrt{3145}}{4} when ± is plus. Add 55 to \sqrt{3145}.
a=\frac{55-\sqrt{3145}}{4}
Now solve the equation a=\frac{55±\sqrt{3145}}{4} when ± is minus. Subtract \sqrt{3145} from 55.
a=\frac{\sqrt{3145}+55}{4} a=\frac{55-\sqrt{3145}}{4}
The equation is now solved.
1+2a^{2}-55a+34=50
Combine a^{2} and a^{2} to get 2a^{2}.
35+2a^{2}-55a=50
Add 1 and 34 to get 35.
2a^{2}-55a=50-35
Subtract 35 from both sides.
2a^{2}-55a=15
Subtract 35 from 50 to get 15.
\frac{2a^{2}-55a}{2}=\frac{15}{2}
Divide both sides by 2.
a^{2}-\frac{55}{2}a=\frac{15}{2}
Dividing by 2 undoes the multiplication by 2.
a^{2}-\frac{55}{2}a+\left(-\frac{55}{4}\right)^{2}=\frac{15}{2}+\left(-\frac{55}{4}\right)^{2}
Divide -\frac{55}{2}, the coefficient of the x term, by 2 to get -\frac{55}{4}. Then add the square of -\frac{55}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}-\frac{55}{2}a+\frac{3025}{16}=\frac{15}{2}+\frac{3025}{16}
Square -\frac{55}{4} by squaring both the numerator and the denominator of the fraction.
a^{2}-\frac{55}{2}a+\frac{3025}{16}=\frac{3145}{16}
Add \frac{15}{2} to \frac{3025}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(a-\frac{55}{4}\right)^{2}=\frac{3145}{16}
Factor a^{2}-\frac{55}{2}a+\frac{3025}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a-\frac{55}{4}\right)^{2}}=\sqrt{\frac{3145}{16}}
Take the square root of both sides of the equation.
a-\frac{55}{4}=\frac{\sqrt{3145}}{4} a-\frac{55}{4}=-\frac{\sqrt{3145}}{4}
Simplify.
a=\frac{\sqrt{3145}+55}{4} a=\frac{55-\sqrt{3145}}{4}
Add \frac{55}{4} to both sides of the equation.