Solve for y
y=\frac{\lambda +15}{2}
Solve for λ
\lambda =2y-15
Graph
Share
Copied to clipboard
1+2y=16+\lambda ^{1}
Calculate 4 to the power of 2 and get 16.
1+2y=16+\lambda
Calculate \lambda to the power of 1 and get \lambda .
2y=16+\lambda -1
Subtract 1 from both sides.
2y=15+\lambda
Subtract 1 from 16 to get 15.
2y=\lambda +15
The equation is in standard form.
\frac{2y}{2}=\frac{\lambda +15}{2}
Divide both sides by 2.
y=\frac{\lambda +15}{2}
Dividing by 2 undoes the multiplication by 2.
1+2y=16+\lambda ^{1}
Calculate 4 to the power of 2 and get 16.
1+2y=16+\lambda
Calculate \lambda to the power of 1 and get \lambda .
16+\lambda =1+2y
Swap sides so that all variable terms are on the left hand side.
\lambda =1+2y-16
Subtract 16 from both sides.
\lambda =-15+2y
Subtract 16 from 1 to get -15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}