Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

1+2i+\frac{1\left(2+i\right)}{\left(2-i\right)\left(2+i\right)}
Multiply both numerator and denominator of \frac{1}{2-i} by the complex conjugate of the denominator, 2+i.
1+2i+\frac{1\left(2+i\right)}{2^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
1+2i+\frac{1\left(2+i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
1+2i+\frac{2+i}{5}
Multiply 1 and 2+i to get 2+i.
1+2i+\left(\frac{2}{5}+\frac{1}{5}i\right)
Divide 2+i by 5 to get \frac{2}{5}+\frac{1}{5}i.
1+\frac{2}{5}+\left(2+\frac{1}{5}\right)i
Combine the real and imaginary parts in numbers 1+2i and \frac{2}{5}+\frac{1}{5}i.
\frac{7}{5}+\frac{11}{5}i
Add 1 to \frac{2}{5}. Add 2 to \frac{1}{5}.
Re(1+2i+\frac{1\left(2+i\right)}{\left(2-i\right)\left(2+i\right)})
Multiply both numerator and denominator of \frac{1}{2-i} by the complex conjugate of the denominator, 2+i.
Re(1+2i+\frac{1\left(2+i\right)}{2^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(1+2i+\frac{1\left(2+i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(1+2i+\frac{2+i}{5})
Multiply 1 and 2+i to get 2+i.
Re(1+2i+\left(\frac{2}{5}+\frac{1}{5}i\right))
Divide 2+i by 5 to get \frac{2}{5}+\frac{1}{5}i.
Re(1+\frac{2}{5}+\left(2+\frac{1}{5}\right)i)
Combine the real and imaginary parts in numbers 1+2i and \frac{2}{5}+\frac{1}{5}i.
Re(\frac{7}{5}+\frac{11}{5}i)
Add 1 to \frac{2}{5}. Add 2 to \frac{1}{5}.
\frac{7}{5}
The real part of \frac{7}{5}+\frac{11}{5}i is \frac{7}{5}.