Evaluate
3+6i
Real Part
3
Share
Copied to clipboard
1+6i+4\left(1-\frac{1}{2}\right)
Multiply 2 and 3i to get 6i.
1+6i+4\left(\frac{2}{2}-\frac{1}{2}\right)
Convert 1 to fraction \frac{2}{2}.
1+6i+4\times \frac{2-1}{2}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
1+6i+4\times \frac{1}{2}
Subtract 1 from 2 to get 1.
1+6i+\frac{4}{2}
Multiply 4 and \frac{1}{2} to get \frac{4}{2}.
1+6i+2
Divide 4 by 2 to get 2.
1+2+6i
Combine the real and imaginary parts.
3+6i
Add 1 to 2.
Re(1+6i+4\left(1-\frac{1}{2}\right))
Multiply 2 and 3i to get 6i.
Re(1+6i+4\left(\frac{2}{2}-\frac{1}{2}\right))
Convert 1 to fraction \frac{2}{2}.
Re(1+6i+4\times \frac{2-1}{2})
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
Re(1+6i+4\times \frac{1}{2})
Subtract 1 from 2 to get 1.
Re(1+6i+\frac{4}{2})
Multiply 4 and \frac{1}{2} to get \frac{4}{2}.
Re(1+6i+2)
Divide 4 by 2 to get 2.
Re(1+2+6i)
Combine the real and imaginary parts in 1+6i+2.
Re(3+6i)
Add 1 to 2.
3
The real part of 3+6i is 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}