Solve for x
x=-\frac{5}{33}\approx -0.151515152
Graph
Share
Copied to clipboard
1+9x^{2}-12x+4=\left(x-5\right)\times 9x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-2\right)^{2}.
5+9x^{2}-12x=\left(x-5\right)\times 9x
Add 1 and 4 to get 5.
5+9x^{2}-12x=\left(9x-45\right)x
Use the distributive property to multiply x-5 by 9.
5+9x^{2}-12x=9x^{2}-45x
Use the distributive property to multiply 9x-45 by x.
5+9x^{2}-12x-9x^{2}=-45x
Subtract 9x^{2} from both sides.
5-12x=-45x
Combine 9x^{2} and -9x^{2} to get 0.
5-12x+45x=0
Add 45x to both sides.
5+33x=0
Combine -12x and 45x to get 33x.
33x=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-5}{33}
Divide both sides by 33.
x=-\frac{5}{33}
Fraction \frac{-5}{33} can be rewritten as -\frac{5}{33} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}