Skip to main content
Solve for v
Tick mark Image

Similar Problems from Web Search

Share

\left(1+\sqrt{v}\right)^{2}=\left(\sqrt{v+7}\right)^{2}
Square both sides of the equation.
1+2\sqrt{v}+\left(\sqrt{v}\right)^{2}=\left(\sqrt{v+7}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{v}\right)^{2}.
1+2\sqrt{v}+v=\left(\sqrt{v+7}\right)^{2}
Calculate \sqrt{v} to the power of 2 and get v.
1+2\sqrt{v}+v=v+7
Calculate \sqrt{v+7} to the power of 2 and get v+7.
1+2\sqrt{v}+v-v=7
Subtract v from both sides.
1+2\sqrt{v}=7
Combine v and -v to get 0.
2\sqrt{v}=7-1
Subtract 1 from both sides.
2\sqrt{v}=6
Subtract 1 from 7 to get 6.
\sqrt{v}=\frac{6}{2}
Divide both sides by 2.
\sqrt{v}=3
Divide 6 by 2 to get 3.
v=9
Square both sides of the equation.
1+\sqrt{9}=\sqrt{9+7}
Substitute 9 for v in the equation 1+\sqrt{v}=\sqrt{v+7}.
4=4
Simplify. The value v=9 satisfies the equation.
v=9
Equation \sqrt{v}+1=\sqrt{v+7} has a unique solution.