Solve for v
v=9
Share
Copied to clipboard
\left(1+\sqrt{v}\right)^{2}=\left(\sqrt{v+7}\right)^{2}
Square both sides of the equation.
1+2\sqrt{v}+\left(\sqrt{v}\right)^{2}=\left(\sqrt{v+7}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{v}\right)^{2}.
1+2\sqrt{v}+v=\left(\sqrt{v+7}\right)^{2}
Calculate \sqrt{v} to the power of 2 and get v.
1+2\sqrt{v}+v=v+7
Calculate \sqrt{v+7} to the power of 2 and get v+7.
1+2\sqrt{v}+v-v=7
Subtract v from both sides.
1+2\sqrt{v}=7
Combine v and -v to get 0.
2\sqrt{v}=7-1
Subtract 1 from both sides.
2\sqrt{v}=6
Subtract 1 from 7 to get 6.
\sqrt{v}=\frac{6}{2}
Divide both sides by 2.
\sqrt{v}=3
Divide 6 by 2 to get 3.
v=9
Square both sides of the equation.
1+\sqrt{9}=\sqrt{9+7}
Substitute 9 for v in the equation 1+\sqrt{v}=\sqrt{v+7}.
4=4
Simplify. The value v=9 satisfies the equation.
v=9
Equation \sqrt{v}+1=\sqrt{v+7} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}