Solve for s_4 (complex solution)
\left\{\begin{matrix}s_{4}=-\frac{-\cos(2x)+1}{etx}\text{, }&x\neq 0\text{ and }t\neq 0\\s_{4}\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\end{matrix}\right.
Solve for t (complex solution)
\left\{\begin{matrix}t=-\frac{-\cos(2x)+1}{es_{4}x}\text{, }&x\neq 0\text{ and }s_{4}\neq 0\\t\in \mathrm{C}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\end{matrix}\right.
Solve for s_4
\left\{\begin{matrix}s_{4}=-\frac{2\left(\sin(x)\right)^{2}}{etx}\text{, }&t\neq 0\text{ and }x\neq 0\\s_{4}\in \mathrm{R}\text{, }&\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\text{, }not(n_{1}=0)\text{ and }t=0\end{matrix}\right.
Solve for t
\left\{\begin{matrix}t=-\frac{2\left(\sin(x)\right)^{2}}{es_{4}x}\text{, }&x\neq 0\text{ and }s_{4}\neq 0\\t\in \mathrm{R}\text{, }&\left(\exists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}\text{ and }s_{4}=0\right)\text{ or }x=0\end{matrix}\right.
Graph
Share
Copied to clipboard
tes_{4}x=\cos(2x)-1
Subtract 1 from both sides.
etxs_{4}=\cos(2x)-1
The equation is in standard form.
\frac{etxs_{4}}{etx}=\frac{\cos(2x)-1}{etx}
Divide both sides by tex.
s_{4}=\frac{\cos(2x)-1}{etx}
Dividing by tex undoes the multiplication by tex.
tes_{4}x=\cos(2x)-1
Subtract 1 from both sides.
es_{4}xt=\cos(2x)-1
The equation is in standard form.
\frac{es_{4}xt}{es_{4}x}=\frac{\cos(2x)-1}{es_{4}x}
Divide both sides by es_{4}x.
t=\frac{\cos(2x)-1}{es_{4}x}
Dividing by es_{4}x undoes the multiplication by es_{4}x.
tes_{4}x=\cos(2x)-1
Subtract 1 from both sides.
etxs_{4}=\cos(2x)-1
The equation is in standard form.
\frac{etxs_{4}}{etx}=\frac{\cos(2x)-1}{etx}
Divide both sides by tex.
s_{4}=\frac{\cos(2x)-1}{etx}
Dividing by tex undoes the multiplication by tex.
tes_{4}x=\cos(2x)-1
Subtract 1 from both sides.
es_{4}xt=\cos(2x)-1
The equation is in standard form.
\frac{es_{4}xt}{es_{4}x}=\frac{\cos(2x)-1}{es_{4}x}
Divide both sides by es_{4}x.
t=\frac{\cos(2x)-1}{es_{4}x}
Dividing by es_{4}x undoes the multiplication by es_{4}x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}