Solve for A
A=\frac{r+R}{R}
R\neq 0
Solve for R
\left\{\begin{matrix}R=-\frac{r}{1-A}\text{, }&r\neq 0\text{ and }A\neq 1\\R\neq 0\text{, }&A=1\text{ and }r=0\end{matrix}\right.
Share
Copied to clipboard
R+r=AR
Multiply both sides of the equation by R.
AR=R+r
Swap sides so that all variable terms are on the left hand side.
RA=r+R
The equation is in standard form.
\frac{RA}{R}=\frac{r+R}{R}
Divide both sides by R.
A=\frac{r+R}{R}
Dividing by R undoes the multiplication by R.
R+r=AR
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R.
R+r-AR=0
Subtract AR from both sides.
R-AR=-r
Subtract r from both sides. Anything subtracted from zero gives its negation.
\left(1-A\right)R=-r
Combine all terms containing R.
\frac{\left(1-A\right)R}{1-A}=-\frac{r}{1-A}
Divide both sides by 1-A.
R=-\frac{r}{1-A}
Dividing by 1-A undoes the multiplication by 1-A.
R=-\frac{r}{1-A}\text{, }R\neq 0
Variable R cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}