Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

1+\frac{n-m}{m-2n}+\frac{m^{2}-n^{2}}{2m^{2}-2mn}
Combine m^{2} and m^{2} to get 2m^{2}.
1+\frac{n-m}{m-2n}+\frac{\left(m+n\right)\left(m-n\right)}{2m\left(m-n\right)}
Factor the expressions that are not already factored in \frac{m^{2}-n^{2}}{2m^{2}-2mn}.
1+\frac{n-m}{m-2n}+\frac{m+n}{2m}
Cancel out m-n in both numerator and denominator.
\frac{m-2n}{m-2n}+\frac{n-m}{m-2n}+\frac{m+n}{2m}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m-2n}{m-2n}.
\frac{m-2n+n-m}{m-2n}+\frac{m+n}{2m}
Since \frac{m-2n}{m-2n} and \frac{n-m}{m-2n} have the same denominator, add them by adding their numerators.
\frac{-n}{m-2n}+\frac{m+n}{2m}
Combine like terms in m-2n+n-m.
\frac{-n\times 2m}{2m\left(m-2n\right)}+\frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-2n and 2m is 2m\left(m-2n\right). Multiply \frac{-n}{m-2n} times \frac{2m}{2m}. Multiply \frac{m+n}{2m} times \frac{m-2n}{m-2n}.
\frac{-n\times 2m+\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
Since \frac{-n\times 2m}{2m\left(m-2n\right)} and \frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)} have the same denominator, add them by adding their numerators.
\frac{-2nm+m^{2}-2mn+nm-2n^{2}}{2m\left(m-2n\right)}
Do the multiplications in -n\times 2m+\left(m+n\right)\left(m-2n\right).
\frac{m^{2}-3nm-2n^{2}}{2m\left(m-2n\right)}
Combine like terms in -2nm+m^{2}-2mn+nm-2n^{2}.
\frac{m^{2}-3nm-2n^{2}}{2m^{2}-4mn}
Expand 2m\left(m-2n\right).
1+\frac{n-m}{m-2n}+\frac{m^{2}-n^{2}}{2m^{2}-2mn}
Combine m^{2} and m^{2} to get 2m^{2}.
1+\frac{n-m}{m-2n}+\frac{\left(m+n\right)\left(m-n\right)}{2m\left(m-n\right)}
Factor the expressions that are not already factored in \frac{m^{2}-n^{2}}{2m^{2}-2mn}.
1+\frac{n-m}{m-2n}+\frac{m+n}{2m}
Cancel out m-n in both numerator and denominator.
\frac{m-2n}{m-2n}+\frac{n-m}{m-2n}+\frac{m+n}{2m}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m-2n}{m-2n}.
\frac{m-2n+n-m}{m-2n}+\frac{m+n}{2m}
Since \frac{m-2n}{m-2n} and \frac{n-m}{m-2n} have the same denominator, add them by adding their numerators.
\frac{-n}{m-2n}+\frac{m+n}{2m}
Combine like terms in m-2n+n-m.
\frac{-n\times 2m}{2m\left(m-2n\right)}+\frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-2n and 2m is 2m\left(m-2n\right). Multiply \frac{-n}{m-2n} times \frac{2m}{2m}. Multiply \frac{m+n}{2m} times \frac{m-2n}{m-2n}.
\frac{-n\times 2m+\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
Since \frac{-n\times 2m}{2m\left(m-2n\right)} and \frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)} have the same denominator, add them by adding their numerators.
\frac{-2nm+m^{2}-2mn+nm-2n^{2}}{2m\left(m-2n\right)}
Do the multiplications in -n\times 2m+\left(m+n\right)\left(m-2n\right).
\frac{m^{2}-3nm-2n^{2}}{2m\left(m-2n\right)}
Combine like terms in -2nm+m^{2}-2mn+nm-2n^{2}.
\frac{m^{2}-3nm-2n^{2}}{2m^{2}-4mn}
Expand 2m\left(m-2n\right).