Evaluate
\frac{m^{2}-3mn-2n^{2}}{2m\left(m-2n\right)}
Expand
\frac{m^{2}-3mn-2n^{2}}{2m\left(m-2n\right)}
Share
Copied to clipboard
1+\frac{n-m}{m-2n}+\frac{m^{2}-n^{2}}{2m^{2}-2mn}
Combine m^{2} and m^{2} to get 2m^{2}.
1+\frac{n-m}{m-2n}+\frac{\left(m+n\right)\left(m-n\right)}{2m\left(m-n\right)}
Factor the expressions that are not already factored in \frac{m^{2}-n^{2}}{2m^{2}-2mn}.
1+\frac{n-m}{m-2n}+\frac{m+n}{2m}
Cancel out m-n in both numerator and denominator.
\frac{m-2n}{m-2n}+\frac{n-m}{m-2n}+\frac{m+n}{2m}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m-2n}{m-2n}.
\frac{m-2n+n-m}{m-2n}+\frac{m+n}{2m}
Since \frac{m-2n}{m-2n} and \frac{n-m}{m-2n} have the same denominator, add them by adding their numerators.
\frac{-n}{m-2n}+\frac{m+n}{2m}
Combine like terms in m-2n+n-m.
\frac{-n\times 2m}{2m\left(m-2n\right)}+\frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-2n and 2m is 2m\left(m-2n\right). Multiply \frac{-n}{m-2n} times \frac{2m}{2m}. Multiply \frac{m+n}{2m} times \frac{m-2n}{m-2n}.
\frac{-n\times 2m+\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
Since \frac{-n\times 2m}{2m\left(m-2n\right)} and \frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)} have the same denominator, add them by adding their numerators.
\frac{-2nm+m^{2}-2mn+nm-2n^{2}}{2m\left(m-2n\right)}
Do the multiplications in -n\times 2m+\left(m+n\right)\left(m-2n\right).
\frac{m^{2}-3nm-2n^{2}}{2m\left(m-2n\right)}
Combine like terms in -2nm+m^{2}-2mn+nm-2n^{2}.
\frac{m^{2}-3nm-2n^{2}}{2m^{2}-4mn}
Expand 2m\left(m-2n\right).
1+\frac{n-m}{m-2n}+\frac{m^{2}-n^{2}}{2m^{2}-2mn}
Combine m^{2} and m^{2} to get 2m^{2}.
1+\frac{n-m}{m-2n}+\frac{\left(m+n\right)\left(m-n\right)}{2m\left(m-n\right)}
Factor the expressions that are not already factored in \frac{m^{2}-n^{2}}{2m^{2}-2mn}.
1+\frac{n-m}{m-2n}+\frac{m+n}{2m}
Cancel out m-n in both numerator and denominator.
\frac{m-2n}{m-2n}+\frac{n-m}{m-2n}+\frac{m+n}{2m}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{m-2n}{m-2n}.
\frac{m-2n+n-m}{m-2n}+\frac{m+n}{2m}
Since \frac{m-2n}{m-2n} and \frac{n-m}{m-2n} have the same denominator, add them by adding their numerators.
\frac{-n}{m-2n}+\frac{m+n}{2m}
Combine like terms in m-2n+n-m.
\frac{-n\times 2m}{2m\left(m-2n\right)}+\frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of m-2n and 2m is 2m\left(m-2n\right). Multiply \frac{-n}{m-2n} times \frac{2m}{2m}. Multiply \frac{m+n}{2m} times \frac{m-2n}{m-2n}.
\frac{-n\times 2m+\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)}
Since \frac{-n\times 2m}{2m\left(m-2n\right)} and \frac{\left(m+n\right)\left(m-2n\right)}{2m\left(m-2n\right)} have the same denominator, add them by adding their numerators.
\frac{-2nm+m^{2}-2mn+nm-2n^{2}}{2m\left(m-2n\right)}
Do the multiplications in -n\times 2m+\left(m+n\right)\left(m-2n\right).
\frac{m^{2}-3nm-2n^{2}}{2m\left(m-2n\right)}
Combine like terms in -2nm+m^{2}-2mn+nm-2n^{2}.
\frac{m^{2}-3nm-2n^{2}}{2m^{2}-4mn}
Expand 2m\left(m-2n\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}