Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

1+\frac{7}{5}\left(-\frac{125}{8}\right)+\frac{2}{\frac{3}{2}}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Calculate -\frac{5}{2} to the power of 3 and get -\frac{125}{8}.
1+\frac{7\left(-125\right)}{5\times 8}+\frac{2}{\frac{3}{2}}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Multiply \frac{7}{5} times -\frac{125}{8} by multiplying numerator times numerator and denominator times denominator.
1+\frac{-875}{40}+\frac{2}{\frac{3}{2}}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Do the multiplications in the fraction \frac{7\left(-125\right)}{5\times 8}.
1-\frac{175}{8}+\frac{2}{\frac{3}{2}}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Reduce the fraction \frac{-875}{40} to lowest terms by extracting and canceling out 5.
\frac{8}{8}-\frac{175}{8}+\frac{2}{\frac{3}{2}}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Convert 1 to fraction \frac{8}{8}.
\frac{8-175}{8}+\frac{2}{\frac{3}{2}}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Since \frac{8}{8} and \frac{175}{8} have the same denominator, subtract them by subtracting their numerators.
-\frac{167}{8}+\frac{2}{\frac{3}{2}}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Subtract 175 from 8 to get -167.
-\frac{167}{8}+2\times \frac{2}{3}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Divide 2 by \frac{3}{2} by multiplying 2 by the reciprocal of \frac{3}{2}.
-\frac{167}{8}+\frac{2\times 2}{3}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Express 2\times \frac{2}{3} as a single fraction.
-\frac{167}{8}+\frac{4}{3}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Multiply 2 and 2 to get 4.
-\frac{501}{24}+\frac{32}{24}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Least common multiple of 8 and 3 is 24. Convert -\frac{167}{8} and \frac{4}{3} to fractions with denominator 24.
\frac{-501+32}{24}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Since -\frac{501}{24} and \frac{32}{24} have the same denominator, add them by adding their numerators.
-\frac{469}{24}-2\left(\frac{1}{3}-\frac{3}{4}\right)
Add -501 and 32 to get -469.
-\frac{469}{24}-2\left(\frac{4}{12}-\frac{9}{12}\right)
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{3}{4} to fractions with denominator 12.
-\frac{469}{24}-2\times \frac{4-9}{12}
Since \frac{4}{12} and \frac{9}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{469}{24}-2\left(-\frac{5}{12}\right)
Subtract 9 from 4 to get -5.
-\frac{469}{24}-\frac{2\left(-5\right)}{12}
Express 2\left(-\frac{5}{12}\right) as a single fraction.
-\frac{469}{24}-\frac{-10}{12}
Multiply 2 and -5 to get -10.
-\frac{469}{24}-\left(-\frac{5}{6}\right)
Reduce the fraction \frac{-10}{12} to lowest terms by extracting and canceling out 2.
-\frac{469}{24}+\frac{5}{6}
The opposite of -\frac{5}{6} is \frac{5}{6}.
-\frac{469}{24}+\frac{20}{24}
Least common multiple of 24 and 6 is 24. Convert -\frac{469}{24} and \frac{5}{6} to fractions with denominator 24.
\frac{-469+20}{24}
Since -\frac{469}{24} and \frac{20}{24} have the same denominator, add them by adding their numerators.
-\frac{449}{24}
Add -469 and 20 to get -449.