Solve for x
x = \frac{\sqrt{97} + 13}{2} \approx 11.424428901
x = \frac{13 - \sqrt{97}}{2} \approx 1.575571099
Graph
Share
Copied to clipboard
x\left(x-3\right)-x\times 7=3x-18
Variable x cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by x\left(x-3\right), the least common multiple of 3-x,x^{2}-3x.
x^{2}-3x-x\times 7=3x-18
Use the distributive property to multiply x by x-3.
x^{2}-3x-7x=3x-18
Multiply -1 and 7 to get -7.
x^{2}-10x=3x-18
Combine -3x and -7x to get -10x.
x^{2}-10x-3x=-18
Subtract 3x from both sides.
x^{2}-13x=-18
Combine -10x and -3x to get -13x.
x^{2}-13x+18=0
Add 18 to both sides.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 18}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -13 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 18}}{2}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-72}}{2}
Multiply -4 times 18.
x=\frac{-\left(-13\right)±\sqrt{97}}{2}
Add 169 to -72.
x=\frac{13±\sqrt{97}}{2}
The opposite of -13 is 13.
x=\frac{\sqrt{97}+13}{2}
Now solve the equation x=\frac{13±\sqrt{97}}{2} when ± is plus. Add 13 to \sqrt{97}.
x=\frac{13-\sqrt{97}}{2}
Now solve the equation x=\frac{13±\sqrt{97}}{2} when ± is minus. Subtract \sqrt{97} from 13.
x=\frac{\sqrt{97}+13}{2} x=\frac{13-\sqrt{97}}{2}
The equation is now solved.
x\left(x-3\right)-x\times 7=3x-18
Variable x cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by x\left(x-3\right), the least common multiple of 3-x,x^{2}-3x.
x^{2}-3x-x\times 7=3x-18
Use the distributive property to multiply x by x-3.
x^{2}-3x-7x=3x-18
Multiply -1 and 7 to get -7.
x^{2}-10x=3x-18
Combine -3x and -7x to get -10x.
x^{2}-10x-3x=-18
Subtract 3x from both sides.
x^{2}-13x=-18
Combine -10x and -3x to get -13x.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-18+\left(-\frac{13}{2}\right)^{2}
Divide -13, the coefficient of the x term, by 2 to get -\frac{13}{2}. Then add the square of -\frac{13}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-13x+\frac{169}{4}=-18+\frac{169}{4}
Square -\frac{13}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-13x+\frac{169}{4}=\frac{97}{4}
Add -18 to \frac{169}{4}.
\left(x-\frac{13}{2}\right)^{2}=\frac{97}{4}
Factor x^{2}-13x+\frac{169}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{97}{4}}
Take the square root of both sides of the equation.
x-\frac{13}{2}=\frac{\sqrt{97}}{2} x-\frac{13}{2}=-\frac{\sqrt{97}}{2}
Simplify.
x=\frac{\sqrt{97}+13}{2} x=\frac{13-\sqrt{97}}{2}
Add \frac{13}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}