Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

x\left(x-3\right)-x\times 7=3x-18
Variable x cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by x\left(x-3\right), the least common multiple of 3-x,x^{2}-3x.
x^{2}-3x-x\times 7=3x-18
Use the distributive property to multiply x by x-3.
x^{2}-3x-7x=3x-18
Multiply -1 and 7 to get -7.
x^{2}-10x=3x-18
Combine -3x and -7x to get -10x.
x^{2}-10x-3x=-18
Subtract 3x from both sides.
x^{2}-13x=-18
Combine -10x and -3x to get -13x.
x^{2}-13x+18=0
Add 18 to both sides.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 18}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -13 for b, and 18 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 18}}{2}
Square -13.
x=\frac{-\left(-13\right)±\sqrt{169-72}}{2}
Multiply -4 times 18.
x=\frac{-\left(-13\right)±\sqrt{97}}{2}
Add 169 to -72.
x=\frac{13±\sqrt{97}}{2}
The opposite of -13 is 13.
x=\frac{\sqrt{97}+13}{2}
Now solve the equation x=\frac{13±\sqrt{97}}{2} when ± is plus. Add 13 to \sqrt{97}.
x=\frac{13-\sqrt{97}}{2}
Now solve the equation x=\frac{13±\sqrt{97}}{2} when ± is minus. Subtract \sqrt{97} from 13.
x=\frac{\sqrt{97}+13}{2} x=\frac{13-\sqrt{97}}{2}
The equation is now solved.
x\left(x-3\right)-x\times 7=3x-18
Variable x cannot be equal to any of the values 0,3 since division by zero is not defined. Multiply both sides of the equation by x\left(x-3\right), the least common multiple of 3-x,x^{2}-3x.
x^{2}-3x-x\times 7=3x-18
Use the distributive property to multiply x by x-3.
x^{2}-3x-7x=3x-18
Multiply -1 and 7 to get -7.
x^{2}-10x=3x-18
Combine -3x and -7x to get -10x.
x^{2}-10x-3x=-18
Subtract 3x from both sides.
x^{2}-13x=-18
Combine -10x and -3x to get -13x.
x^{2}-13x+\left(-\frac{13}{2}\right)^{2}=-18+\left(-\frac{13}{2}\right)^{2}
Divide -13, the coefficient of the x term, by 2 to get -\frac{13}{2}. Then add the square of -\frac{13}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-13x+\frac{169}{4}=-18+\frac{169}{4}
Square -\frac{13}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-13x+\frac{169}{4}=\frac{97}{4}
Add -18 to \frac{169}{4}.
\left(x-\frac{13}{2}\right)^{2}=\frac{97}{4}
Factor x^{2}-13x+\frac{169}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{2}\right)^{2}}=\sqrt{\frac{97}{4}}
Take the square root of both sides of the equation.
x-\frac{13}{2}=\frac{\sqrt{97}}{2} x-\frac{13}{2}=-\frac{\sqrt{97}}{2}
Simplify.
x=\frac{\sqrt{97}+13}{2} x=\frac{13-\sqrt{97}}{2}
Add \frac{13}{2} to both sides of the equation.