Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

1+\frac{2a+1}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{a}{a-1}
Factor a^{3}-1.
\frac{\left(a-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{2a+1}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{a}{a-1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(a-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}.
\frac{\left(a-1\right)\left(a^{2}+a+1\right)+2a+1}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{a}{a-1}
Since \frac{\left(a-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)} and \frac{2a+1}{\left(a-1\right)\left(a^{2}+a+1\right)} have the same denominator, add them by adding their numerators.
\frac{a^{3}+a^{2}+a-a^{2}-a-1+2a+1}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{a}{a-1}
Do the multiplications in \left(a-1\right)\left(a^{2}+a+1\right)+2a+1.
\frac{a^{3}+2a}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{a}{a-1}
Combine like terms in a^{3}+a^{2}+a-a^{2}-a-1+2a+1.
\frac{a^{3}+2a}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{a\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a^{2}+a+1\right) and a-1 is \left(a-1\right)\left(a^{2}+a+1\right). Multiply \frac{a}{a-1} times \frac{a^{2}+a+1}{a^{2}+a+1}.
\frac{a^{3}+2a-a\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
Since \frac{a^{3}+2a}{\left(a-1\right)\left(a^{2}+a+1\right)} and \frac{a\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{3}+2a-a^{3}-a^{2}-a}{\left(a-1\right)\left(a^{2}+a+1\right)}
Do the multiplications in a^{3}+2a-a\left(a^{2}+a+1\right).
\frac{a-a^{2}}{\left(a-1\right)\left(a^{2}+a+1\right)}
Combine like terms in a^{3}+2a-a^{3}-a^{2}-a.
\frac{a\left(-a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
Factor the expressions that are not already factored in \frac{a-a^{2}}{\left(a-1\right)\left(a^{2}+a+1\right)}.
\frac{-a\left(a-1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
Extract the negative sign in 1-a.
\frac{-a}{a^{2}+a+1}
Cancel out a-1 in both numerator and denominator.
1+\frac{2a+1}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{a}{a-1}
Factor a^{3}-1.
\frac{\left(a-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}+\frac{2a+1}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{a}{a-1}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(a-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}.
\frac{\left(a-1\right)\left(a^{2}+a+1\right)+2a+1}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{a}{a-1}
Since \frac{\left(a-1\right)\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)} and \frac{2a+1}{\left(a-1\right)\left(a^{2}+a+1\right)} have the same denominator, add them by adding their numerators.
\frac{a^{3}+a^{2}+a-a^{2}-a-1+2a+1}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{a}{a-1}
Do the multiplications in \left(a-1\right)\left(a^{2}+a+1\right)+2a+1.
\frac{a^{3}+2a}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{a}{a-1}
Combine like terms in a^{3}+a^{2}+a-a^{2}-a-1+2a+1.
\frac{a^{3}+2a}{\left(a-1\right)\left(a^{2}+a+1\right)}-\frac{a\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(a^{2}+a+1\right) and a-1 is \left(a-1\right)\left(a^{2}+a+1\right). Multiply \frac{a}{a-1} times \frac{a^{2}+a+1}{a^{2}+a+1}.
\frac{a^{3}+2a-a\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
Since \frac{a^{3}+2a}{\left(a-1\right)\left(a^{2}+a+1\right)} and \frac{a\left(a^{2}+a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{3}+2a-a^{3}-a^{2}-a}{\left(a-1\right)\left(a^{2}+a+1\right)}
Do the multiplications in a^{3}+2a-a\left(a^{2}+a+1\right).
\frac{a-a^{2}}{\left(a-1\right)\left(a^{2}+a+1\right)}
Combine like terms in a^{3}+2a-a^{3}-a^{2}-a.
\frac{a\left(-a+1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
Factor the expressions that are not already factored in \frac{a-a^{2}}{\left(a-1\right)\left(a^{2}+a+1\right)}.
\frac{-a\left(a-1\right)}{\left(a-1\right)\left(a^{2}+a+1\right)}
Extract the negative sign in 1-a.
\frac{-a}{a^{2}+a+1}
Cancel out a-1 in both numerator and denominator.