Evaluate
\frac{133}{150}\approx 0.886666667
Factor
\frac{7 \cdot 19}{2 \cdot 3 \cdot 5 ^ {2}} = 0.8866666666666667
Share
Copied to clipboard
1+\frac{1}{5}\left(-\frac{3}{15}+\frac{5}{15}\right)+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Least common multiple of 5 and 3 is 15. Convert -\frac{1}{5} and \frac{1}{3} to fractions with denominator 15.
1+\frac{1}{5}\times \frac{-3+5}{15}+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Since -\frac{3}{15} and \frac{5}{15} have the same denominator, add them by adding their numerators.
1+\frac{1}{5}\times \frac{2}{15}+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Add -3 and 5 to get 2.
1+\frac{1\times 2}{5\times 15}+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Multiply \frac{1}{5} times \frac{2}{15} by multiplying numerator times numerator and denominator times denominator.
1+\frac{2}{75}+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Do the multiplications in the fraction \frac{1\times 2}{5\times 15}.
\frac{75}{75}+\frac{2}{75}+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Convert 1 to fraction \frac{75}{75}.
\frac{75+2}{75}+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Since \frac{75}{75} and \frac{2}{75} have the same denominator, add them by adding their numerators.
\frac{77}{75}+\frac{1}{10}-\frac{1}{5}-\frac{1}{25}
Add 75 and 2 to get 77.
\frac{154}{150}+\frac{15}{150}-\frac{1}{5}-\frac{1}{25}
Least common multiple of 75 and 10 is 150. Convert \frac{77}{75} and \frac{1}{10} to fractions with denominator 150.
\frac{154+15}{150}-\frac{1}{5}-\frac{1}{25}
Since \frac{154}{150} and \frac{15}{150} have the same denominator, add them by adding their numerators.
\frac{169}{150}-\frac{1}{5}-\frac{1}{25}
Add 154 and 15 to get 169.
\frac{169}{150}-\frac{30}{150}-\frac{1}{25}
Least common multiple of 150 and 5 is 150. Convert \frac{169}{150} and \frac{1}{5} to fractions with denominator 150.
\frac{169-30}{150}-\frac{1}{25}
Since \frac{169}{150} and \frac{30}{150} have the same denominator, subtract them by subtracting their numerators.
\frac{139}{150}-\frac{1}{25}
Subtract 30 from 169 to get 139.
\frac{139}{150}-\frac{6}{150}
Least common multiple of 150 and 25 is 150. Convert \frac{139}{150} and \frac{1}{25} to fractions with denominator 150.
\frac{139-6}{150}
Since \frac{139}{150} and \frac{6}{150} have the same denominator, subtract them by subtracting their numerators.
\frac{133}{150}
Subtract 6 from 139 to get 133.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}