Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

1+\frac{1}{2}\left(\frac{2n+1}{\left(2n-1\right)\left(2n+1\right)}-\frac{2n-1}{\left(2n-1\right)\left(2n+1\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2n-1 and 2n+1 is \left(2n-1\right)\left(2n+1\right). Multiply \frac{1}{2n-1} times \frac{2n+1}{2n+1}. Multiply \frac{1}{2n+1} times \frac{2n-1}{2n-1}.
1+\frac{1}{2}\times \frac{2n+1-\left(2n-1\right)}{\left(2n-1\right)\left(2n+1\right)}
Since \frac{2n+1}{\left(2n-1\right)\left(2n+1\right)} and \frac{2n-1}{\left(2n-1\right)\left(2n+1\right)} have the same denominator, subtract them by subtracting their numerators.
1+\frac{1}{2}\times \frac{2n+1-2n+1}{\left(2n-1\right)\left(2n+1\right)}
Do the multiplications in 2n+1-\left(2n-1\right).
1+\frac{1}{2}\times \frac{2}{\left(2n-1\right)\left(2n+1\right)}
Combine like terms in 2n+1-2n+1.
1+\frac{2}{2\left(2n-1\right)\left(2n+1\right)}
Multiply \frac{1}{2} times \frac{2}{\left(2n-1\right)\left(2n+1\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(2n-1\right)\left(2n+1\right)}{2\left(2n-1\right)\left(2n+1\right)}+\frac{2}{2\left(2n-1\right)\left(2n+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2\left(2n-1\right)\left(2n+1\right)}{2\left(2n-1\right)\left(2n+1\right)}.
\frac{2\left(2n-1\right)\left(2n+1\right)+2}{2\left(2n-1\right)\left(2n+1\right)}
Since \frac{2\left(2n-1\right)\left(2n+1\right)}{2\left(2n-1\right)\left(2n+1\right)} and \frac{2}{2\left(2n-1\right)\left(2n+1\right)} have the same denominator, add them by adding their numerators.
\frac{8n^{2}+4n-4n-2+2}{2\left(2n-1\right)\left(2n+1\right)}
Do the multiplications in 2\left(2n-1\right)\left(2n+1\right)+2.
\frac{8n^{2}}{2\left(2n-1\right)\left(2n+1\right)}
Combine like terms in 8n^{2}+4n-4n-2+2.
\frac{4n^{2}}{\left(2n-1\right)\left(2n+1\right)}
Cancel out 2 in both numerator and denominator.
\frac{4n^{2}}{4n^{2}-1}
Expand \left(2n-1\right)\left(2n+1\right).
1+\frac{1}{2}\left(\frac{2n+1}{\left(2n-1\right)\left(2n+1\right)}-\frac{2n-1}{\left(2n-1\right)\left(2n+1\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2n-1 and 2n+1 is \left(2n-1\right)\left(2n+1\right). Multiply \frac{1}{2n-1} times \frac{2n+1}{2n+1}. Multiply \frac{1}{2n+1} times \frac{2n-1}{2n-1}.
1+\frac{1}{2}\times \frac{2n+1-\left(2n-1\right)}{\left(2n-1\right)\left(2n+1\right)}
Since \frac{2n+1}{\left(2n-1\right)\left(2n+1\right)} and \frac{2n-1}{\left(2n-1\right)\left(2n+1\right)} have the same denominator, subtract them by subtracting their numerators.
1+\frac{1}{2}\times \frac{2n+1-2n+1}{\left(2n-1\right)\left(2n+1\right)}
Do the multiplications in 2n+1-\left(2n-1\right).
1+\frac{1}{2}\times \frac{2}{\left(2n-1\right)\left(2n+1\right)}
Combine like terms in 2n+1-2n+1.
1+\frac{2}{2\left(2n-1\right)\left(2n+1\right)}
Multiply \frac{1}{2} times \frac{2}{\left(2n-1\right)\left(2n+1\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{2\left(2n-1\right)\left(2n+1\right)}{2\left(2n-1\right)\left(2n+1\right)}+\frac{2}{2\left(2n-1\right)\left(2n+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2\left(2n-1\right)\left(2n+1\right)}{2\left(2n-1\right)\left(2n+1\right)}.
\frac{2\left(2n-1\right)\left(2n+1\right)+2}{2\left(2n-1\right)\left(2n+1\right)}
Since \frac{2\left(2n-1\right)\left(2n+1\right)}{2\left(2n-1\right)\left(2n+1\right)} and \frac{2}{2\left(2n-1\right)\left(2n+1\right)} have the same denominator, add them by adding their numerators.
\frac{8n^{2}+4n-4n-2+2}{2\left(2n-1\right)\left(2n+1\right)}
Do the multiplications in 2\left(2n-1\right)\left(2n+1\right)+2.
\frac{8n^{2}}{2\left(2n-1\right)\left(2n+1\right)}
Combine like terms in 8n^{2}+4n-4n-2+2.
\frac{4n^{2}}{\left(2n-1\right)\left(2n+1\right)}
Cancel out 2 in both numerator and denominator.
\frac{4n^{2}}{4n^{2}-1}
Expand \left(2n-1\right)\left(2n+1\right).