Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

1+\frac{1}{2}\left(-9\right)+\frac{1\times 2+1}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Calculate 3 to the power of 2 and get 9.
1+\frac{-9}{2}+\frac{1\times 2+1}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Multiply \frac{1}{2} and -9 to get \frac{-9}{2}.
1-\frac{9}{2}+\frac{1\times 2+1}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Fraction \frac{-9}{2} can be rewritten as -\frac{9}{2} by extracting the negative sign.
\frac{2}{2}-\frac{9}{2}+\frac{1\times 2+1}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Convert 1 to fraction \frac{2}{2}.
\frac{2-9}{2}+\frac{1\times 2+1}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Since \frac{2}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{2}+\frac{1\times 2+1}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Subtract 9 from 2 to get -7.
-\frac{7}{2}+\frac{2+1}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Multiply 1 and 2 to get 2.
-\frac{7}{2}+\frac{3}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Add 2 and 1 to get 3.
-\frac{7}{2}+\frac{3}{2}\times 9+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Calculate -3 to the power of 2 and get 9.
-\frac{7}{2}+\frac{3\times 9}{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Express \frac{3}{2}\times 9 as a single fraction.
-\frac{7}{2}+\frac{27}{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Multiply 3 and 9 to get 27.
\frac{-7+27}{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Since -\frac{7}{2} and \frac{27}{2} have the same denominator, add them by adding their numerators.
\frac{20}{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Add -7 and 27 to get 20.
10+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Divide 20 by 2 to get 10.
11-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Add 10 and 1 to get 11.
11-\frac{1}{2}\times 9+\left(1-\frac{1}{2}\right)\times 9
Calculate 3 to the power of 2 and get 9.
11-\frac{9}{2}+\left(1-\frac{1}{2}\right)\times 9
Multiply \frac{1}{2} and 9 to get \frac{9}{2}.
\frac{22}{2}-\frac{9}{2}+\left(1-\frac{1}{2}\right)\times 9
Convert 11 to fraction \frac{22}{2}.
\frac{22-9}{2}+\left(1-\frac{1}{2}\right)\times 9
Since \frac{22}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{2}+\left(1-\frac{1}{2}\right)\times 9
Subtract 9 from 22 to get 13.
\frac{13}{2}+\left(\frac{2}{2}-\frac{1}{2}\right)\times 9
Convert 1 to fraction \frac{2}{2}.
\frac{13}{2}+\frac{2-1}{2}\times 9
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{2}+\frac{1}{2}\times 9
Subtract 1 from 2 to get 1.
\frac{13}{2}+\frac{9}{2}
Multiply \frac{1}{2} and 9 to get \frac{9}{2}.
\frac{13+9}{2}
Since \frac{13}{2} and \frac{9}{2} have the same denominator, add them by adding their numerators.
\frac{22}{2}
Add 13 and 9 to get 22.
11
Divide 22 by 2 to get 11.