Evaluate
11
Factor
11
Share
Copied to clipboard
1+\frac{1}{2}\left(-9\right)+\frac{1\times 2+1}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Calculate 3 to the power of 2 and get 9.
1+\frac{-9}{2}+\frac{1\times 2+1}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Multiply \frac{1}{2} and -9 to get \frac{-9}{2}.
1-\frac{9}{2}+\frac{1\times 2+1}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Fraction \frac{-9}{2} can be rewritten as -\frac{9}{2} by extracting the negative sign.
\frac{2}{2}-\frac{9}{2}+\frac{1\times 2+1}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Convert 1 to fraction \frac{2}{2}.
\frac{2-9}{2}+\frac{1\times 2+1}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Since \frac{2}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{7}{2}+\frac{1\times 2+1}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Subtract 9 from 2 to get -7.
-\frac{7}{2}+\frac{2+1}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Multiply 1 and 2 to get 2.
-\frac{7}{2}+\frac{3}{2}\left(-3\right)^{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Add 2 and 1 to get 3.
-\frac{7}{2}+\frac{3}{2}\times 9+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Calculate -3 to the power of 2 and get 9.
-\frac{7}{2}+\frac{3\times 9}{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Express \frac{3}{2}\times 9 as a single fraction.
-\frac{7}{2}+\frac{27}{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Multiply 3 and 9 to get 27.
\frac{-7+27}{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Since -\frac{7}{2} and \frac{27}{2} have the same denominator, add them by adding their numerators.
\frac{20}{2}+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Add -7 and 27 to get 20.
10+1-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Divide 20 by 2 to get 10.
11-\frac{1}{2}\times 3^{2}+\left(1-\frac{1}{2}\right)\times 9
Add 10 and 1 to get 11.
11-\frac{1}{2}\times 9+\left(1-\frac{1}{2}\right)\times 9
Calculate 3 to the power of 2 and get 9.
11-\frac{9}{2}+\left(1-\frac{1}{2}\right)\times 9
Multiply \frac{1}{2} and 9 to get \frac{9}{2}.
\frac{22}{2}-\frac{9}{2}+\left(1-\frac{1}{2}\right)\times 9
Convert 11 to fraction \frac{22}{2}.
\frac{22-9}{2}+\left(1-\frac{1}{2}\right)\times 9
Since \frac{22}{2} and \frac{9}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{2}+\left(1-\frac{1}{2}\right)\times 9
Subtract 9 from 22 to get 13.
\frac{13}{2}+\left(\frac{2}{2}-\frac{1}{2}\right)\times 9
Convert 1 to fraction \frac{2}{2}.
\frac{13}{2}+\frac{2-1}{2}\times 9
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{2}+\frac{1}{2}\times 9
Subtract 1 from 2 to get 1.
\frac{13}{2}+\frac{9}{2}
Multiply \frac{1}{2} and 9 to get \frac{9}{2}.
\frac{13+9}{2}
Since \frac{13}{2} and \frac{9}{2} have the same denominator, add them by adding their numerators.
\frac{22}{2}
Add 13 and 9 to get 22.
11
Divide 22 by 2 to get 11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}