Evaluate
\frac{137}{60}\approx 2.283333333
Factor
\frac{137}{2 ^ {2} \cdot 3 \cdot 5} = 2\frac{17}{60} = 2.283333333333333
Share
Copied to clipboard
\frac{2}{2}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}
Convert 1 to fraction \frac{2}{2}.
\frac{2+1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, add them by adding their numerators.
\frac{3}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}
Add 2 and 1 to get 3.
\frac{9}{6}+\frac{2}{6}+\frac{1}{4}+\frac{1}{5}
Least common multiple of 2 and 3 is 6. Convert \frac{3}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{9+2}{6}+\frac{1}{4}+\frac{1}{5}
Since \frac{9}{6} and \frac{2}{6} have the same denominator, add them by adding their numerators.
\frac{11}{6}+\frac{1}{4}+\frac{1}{5}
Add 9 and 2 to get 11.
\frac{22}{12}+\frac{3}{12}+\frac{1}{5}
Least common multiple of 6 and 4 is 12. Convert \frac{11}{6} and \frac{1}{4} to fractions with denominator 12.
\frac{22+3}{12}+\frac{1}{5}
Since \frac{22}{12} and \frac{3}{12} have the same denominator, add them by adding their numerators.
\frac{25}{12}+\frac{1}{5}
Add 22 and 3 to get 25.
\frac{125}{60}+\frac{12}{60}
Least common multiple of 12 and 5 is 60. Convert \frac{25}{12} and \frac{1}{5} to fractions with denominator 60.
\frac{125+12}{60}
Since \frac{125}{60} and \frac{12}{60} have the same denominator, add them by adding their numerators.
\frac{137}{60}
Add 125 and 12 to get 137.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}