Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

1+\frac{1\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}
Multiply both numerator and denominator of \frac{1}{1+2i} by the complex conjugate of the denominator, 1-2i.
1+\frac{1\left(1-2i\right)}{1^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
1+\frac{1\left(1-2i\right)}{5}
By definition, i^{2} is -1. Calculate the denominator.
1+\frac{1-2i}{5}
Multiply 1 and 1-2i to get 1-2i.
1+\left(\frac{1}{5}-\frac{2}{5}i\right)
Divide 1-2i by 5 to get \frac{1}{5}-\frac{2}{5}i.
1+\frac{1}{5}-\frac{2}{5}i
Combine the real and imaginary parts in numbers 1 and \frac{1}{5}-\frac{2}{5}i.
\frac{6}{5}-\frac{2}{5}i
Add 1 to \frac{1}{5}.
Re(1+\frac{1\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)})
Multiply both numerator and denominator of \frac{1}{1+2i} by the complex conjugate of the denominator, 1-2i.
Re(1+\frac{1\left(1-2i\right)}{1^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(1+\frac{1\left(1-2i\right)}{5})
By definition, i^{2} is -1. Calculate the denominator.
Re(1+\frac{1-2i}{5})
Multiply 1 and 1-2i to get 1-2i.
Re(1+\left(\frac{1}{5}-\frac{2}{5}i\right))
Divide 1-2i by 5 to get \frac{1}{5}-\frac{2}{5}i.
Re(1+\frac{1}{5}-\frac{2}{5}i)
Combine the real and imaginary parts in numbers 1 and \frac{1}{5}-\frac{2}{5}i.
Re(\frac{6}{5}-\frac{2}{5}i)
Add 1 to \frac{1}{5}.
\frac{6}{5}
The real part of \frac{6}{5}-\frac{2}{5}i is \frac{6}{5}.