Evaluate
\frac{5\sqrt{2}}{6}+1\approx 2.178511302
Share
Copied to clipboard
1+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\times \frac{4+\sqrt{256}}{\sqrt{144}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
1+\frac{\sqrt{2}}{2}\times \frac{4+\sqrt{256}}{\sqrt{144}}
The square of \sqrt{2} is 2.
1+\frac{\sqrt{2}}{2}\times \frac{4+16}{\sqrt{144}}
Calculate the square root of 256 and get 16.
1+\frac{\sqrt{2}}{2}\times \frac{20}{\sqrt{144}}
Add 4 and 16 to get 20.
1+\frac{\sqrt{2}}{2}\times \frac{20}{12}
Calculate the square root of 144 and get 12.
1+\frac{\sqrt{2}}{2}\times \frac{5}{3}
Reduce the fraction \frac{20}{12} to lowest terms by extracting and canceling out 4.
1+\frac{\sqrt{2}\times 5}{2\times 3}
Multiply \frac{\sqrt{2}}{2} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2\times 3}{2\times 3}+\frac{\sqrt{2}\times 5}{2\times 3}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{2\times 3}{2\times 3}.
\frac{2\times 3+\sqrt{2}\times 5}{2\times 3}
Since \frac{2\times 3}{2\times 3} and \frac{\sqrt{2}\times 5}{2\times 3} have the same denominator, add them by adding their numerators.
\frac{6+5\sqrt{2}}{2\times 3}
Do the multiplications in 2\times 3+\sqrt{2}\times 5.
\frac{6+5\sqrt{2}}{6}
Expand 2\times 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}