1 + \frac { - 3 } { + 2 } - 2 \frac { 5 } { - 3 }
Evaluate
-\frac{5}{6}\approx -0.833333333
Factor
-\frac{5}{6} = -0.8333333333333334
Share
Copied to clipboard
1-\frac{3}{2}-\frac{2\left(-3\right)+5}{-3}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{2}{2}-\frac{3}{2}-\frac{2\left(-3\right)+5}{-3}
Convert 1 to fraction \frac{2}{2}.
\frac{2-3}{2}-\frac{2\left(-3\right)+5}{-3}
Since \frac{2}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
-\frac{1}{2}-\frac{2\left(-3\right)+5}{-3}
Subtract 3 from 2 to get -1.
-\frac{1}{2}-\frac{-6+5}{-3}
Multiply 2 and -3 to get -6.
-\frac{1}{2}-\frac{-1}{-3}
Add -6 and 5 to get -1.
-\frac{1}{2}-\frac{1}{3}
Fraction \frac{-1}{-3} can be simplified to \frac{1}{3} by removing the negative sign from both the numerator and the denominator.
-\frac{3}{6}-\frac{2}{6}
Least common multiple of 2 and 3 is 6. Convert -\frac{1}{2} and \frac{1}{3} to fractions with denominator 6.
\frac{-3-2}{6}
Since -\frac{3}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{6}
Subtract 2 from -3 to get -5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}