Solve for x
x = \frac{5430000}{569} = 9543\frac{33}{569} \approx 9543.057996485
Graph
Share
Copied to clipboard
9.3\times \frac{1}{1000000}x=2\left(0.0543-0.26\times 4\times 10^{-6}x\right)
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{93}{10000000}x=2\left(0.0543-0.26\times 4\times 10^{-6}x\right)
Multiply 9.3 and \frac{1}{1000000} to get \frac{93}{10000000}.
\frac{93}{10000000}x=2\left(0.0543-1.04\times 10^{-6}x\right)
Multiply 0.26 and 4 to get 1.04.
\frac{93}{10000000}x=2\left(0.0543-1.04\times \frac{1}{1000000}x\right)
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{93}{10000000}x=2\left(0.0543-\frac{13}{12500000}x\right)
Multiply 1.04 and \frac{1}{1000000} to get \frac{13}{12500000}.
\frac{93}{10000000}x=0.1086-\frac{13}{6250000}x
Use the distributive property to multiply 2 by 0.0543-\frac{13}{12500000}x.
\frac{93}{10000000}x+\frac{13}{6250000}x=0.1086
Add \frac{13}{6250000}x to both sides.
\frac{569}{50000000}x=0.1086
Combine \frac{93}{10000000}x and \frac{13}{6250000}x to get \frac{569}{50000000}x.
x=0.1086\times \frac{50000000}{569}
Multiply both sides by \frac{50000000}{569}, the reciprocal of \frac{569}{50000000}.
x=\frac{5430000}{569}
Multiply 0.1086 and \frac{50000000}{569} to get \frac{5430000}{569}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}