Solve for C_y
C_{y}=0
Share
Copied to clipboard
0=\frac{C_{y}\times 75\times 24\times 60\times 60}{150^{2}}
Multiply 0 and 848 to get 0.
0=\frac{C_{y}\times 1800\times 60\times 60}{150^{2}}
Multiply 75 and 24 to get 1800.
0=\frac{C_{y}\times 108000\times 60}{150^{2}}
Multiply 1800 and 60 to get 108000.
0=\frac{C_{y}\times 6480000}{150^{2}}
Multiply 108000 and 60 to get 6480000.
0=\frac{C_{y}\times 6480000}{22500}
Calculate 150 to the power of 2 and get 22500.
0=C_{y}\times 288
Divide C_{y}\times 6480000 by 22500 to get C_{y}\times 288.
C_{y}\times 288=0
Swap sides so that all variable terms are on the left hand side.
C_{y}=0
Product of two numbers is equal to 0 if at least one of them is 0. Since 288 is not equal to 0, C_{y} must be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}