Evaluate
\frac{\sqrt{273}}{42}\approx 0.393397896
Share
Copied to clipboard
0+10\sqrt{\frac{13}{8400}}
Multiply 0 and 802 to get 0.
0+10\times \frac{\sqrt{13}}{\sqrt{8400}}
Rewrite the square root of the division \sqrt{\frac{13}{8400}} as the division of square roots \frac{\sqrt{13}}{\sqrt{8400}}.
0+10\times \frac{\sqrt{13}}{20\sqrt{21}}
Factor 8400=20^{2}\times 21. Rewrite the square root of the product \sqrt{20^{2}\times 21} as the product of square roots \sqrt{20^{2}}\sqrt{21}. Take the square root of 20^{2}.
0+10\times \frac{\sqrt{13}\sqrt{21}}{20\left(\sqrt{21}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{13}}{20\sqrt{21}} by multiplying numerator and denominator by \sqrt{21}.
0+10\times \frac{\sqrt{13}\sqrt{21}}{20\times 21}
The square of \sqrt{21} is 21.
0+10\times \frac{\sqrt{273}}{20\times 21}
To multiply \sqrt{13} and \sqrt{21}, multiply the numbers under the square root.
0+10\times \frac{\sqrt{273}}{420}
Multiply 20 and 21 to get 420.
0+\frac{\sqrt{273}}{42}
Cancel out 420, the greatest common factor in 10 and 420.
\frac{\sqrt{273}}{42}
Anything plus zero gives itself.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}