Evaluate
\frac{114}{7}\approx 16.285714286
Factor
\frac{2 \cdot 3 \cdot 19}{7} = 16\frac{2}{7} = 16.285714285714285
Share
Copied to clipboard
0\times \frac{2\times 7+1}{7}+\frac{3}{4}\times \frac{7\times 7+3}{7}+75\times \frac{1}{7}
Multiply 0 and 75 to get 0.
0\times \frac{14+1}{7}+\frac{3}{4}\times \frac{7\times 7+3}{7}+75\times \frac{1}{7}
Multiply 2 and 7 to get 14.
0\times \frac{15}{7}+\frac{3}{4}\times \frac{7\times 7+3}{7}+75\times \frac{1}{7}
Add 14 and 1 to get 15.
0+\frac{3}{4}\times \frac{7\times 7+3}{7}+75\times \frac{1}{7}
Multiply 0 and \frac{15}{7} to get 0.
0+\frac{3}{4}\times \frac{49+3}{7}+75\times \frac{1}{7}
Multiply 7 and 7 to get 49.
0+\frac{3}{4}\times \frac{52}{7}+75\times \frac{1}{7}
Add 49 and 3 to get 52.
0+\frac{3\times 52}{4\times 7}+75\times \frac{1}{7}
Multiply \frac{3}{4} times \frac{52}{7} by multiplying numerator times numerator and denominator times denominator.
0+\frac{156}{28}+75\times \frac{1}{7}
Do the multiplications in the fraction \frac{3\times 52}{4\times 7}.
0+\frac{39}{7}+75\times \frac{1}{7}
Reduce the fraction \frac{156}{28} to lowest terms by extracting and canceling out 4.
\frac{39}{7}+75\times \frac{1}{7}
Add 0 and \frac{39}{7} to get \frac{39}{7}.
\frac{39}{7}+\frac{75}{7}
Multiply 75 and \frac{1}{7} to get \frac{75}{7}.
\frac{39+75}{7}
Since \frac{39}{7} and \frac{75}{7} have the same denominator, add them by adding their numerators.
\frac{114}{7}
Add 39 and 75 to get 114.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}