Solve for t
t = \frac{3 \sqrt{85}}{5} \approx 5.531726674
t = -\frac{3 \sqrt{85}}{5} \approx -5.531726674
Share
Copied to clipboard
0t-\frac{\frac{160}{3}\times 5\times 10^{-4}}{4\times 10^{-3}}t^{2}=-204
Multiply 0 and 6 to get 0.
0-\frac{\frac{160}{3}\times 5\times 10^{-4}}{4\times 10^{-3}}t^{2}=-204
Anything times zero gives zero.
0-\frac{5\times \frac{160}{3}}{4\times 10^{1}}t^{2}=-204
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
0-\frac{\frac{800}{3}}{4\times 10^{1}}t^{2}=-204
Multiply 5 and \frac{160}{3} to get \frac{800}{3}.
0-\frac{\frac{800}{3}}{4\times 10}t^{2}=-204
Calculate 10 to the power of 1 and get 10.
0-\frac{\frac{800}{3}}{40}t^{2}=-204
Multiply 4 and 10 to get 40.
0-\frac{800}{3\times 40}t^{2}=-204
Express \frac{\frac{800}{3}}{40} as a single fraction.
0-\frac{800}{120}t^{2}=-204
Multiply 3 and 40 to get 120.
0-\frac{20}{3}t^{2}=-204
Reduce the fraction \frac{800}{120} to lowest terms by extracting and canceling out 40.
-\frac{20}{3}t^{2}=-204
Anything plus zero gives itself.
t^{2}=-204\left(-\frac{3}{20}\right)
Multiply both sides by -\frac{3}{20}, the reciprocal of -\frac{20}{3}.
t^{2}=\frac{153}{5}
Multiply -204 and -\frac{3}{20} to get \frac{153}{5}.
t=\frac{3\sqrt{85}}{5} t=-\frac{3\sqrt{85}}{5}
Take the square root of both sides of the equation.
0t-\frac{\frac{160}{3}\times 5\times 10^{-4}}{4\times 10^{-3}}t^{2}=-204
Multiply 0 and 6 to get 0.
0-\frac{\frac{160}{3}\times 5\times 10^{-4}}{4\times 10^{-3}}t^{2}=-204
Anything times zero gives zero.
0-\frac{5\times \frac{160}{3}}{4\times 10^{1}}t^{2}=-204
To divide powers of the same base, subtract the numerator's exponent from the denominator's exponent.
0-\frac{\frac{800}{3}}{4\times 10^{1}}t^{2}=-204
Multiply 5 and \frac{160}{3} to get \frac{800}{3}.
0-\frac{\frac{800}{3}}{4\times 10}t^{2}=-204
Calculate 10 to the power of 1 and get 10.
0-\frac{\frac{800}{3}}{40}t^{2}=-204
Multiply 4 and 10 to get 40.
0-\frac{800}{3\times 40}t^{2}=-204
Express \frac{\frac{800}{3}}{40} as a single fraction.
0-\frac{800}{120}t^{2}=-204
Multiply 3 and 40 to get 120.
0-\frac{20}{3}t^{2}=-204
Reduce the fraction \frac{800}{120} to lowest terms by extracting and canceling out 40.
-\frac{20}{3}t^{2}=-204
Anything plus zero gives itself.
-\frac{20}{3}t^{2}+204=0
Add 204 to both sides.
t=\frac{0±\sqrt{0^{2}-4\left(-\frac{20}{3}\right)\times 204}}{2\left(-\frac{20}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{20}{3} for a, 0 for b, and 204 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\left(-\frac{20}{3}\right)\times 204}}{2\left(-\frac{20}{3}\right)}
Square 0.
t=\frac{0±\sqrt{\frac{80}{3}\times 204}}{2\left(-\frac{20}{3}\right)}
Multiply -4 times -\frac{20}{3}.
t=\frac{0±\sqrt{5440}}{2\left(-\frac{20}{3}\right)}
Multiply \frac{80}{3} times 204.
t=\frac{0±8\sqrt{85}}{2\left(-\frac{20}{3}\right)}
Take the square root of 5440.
t=\frac{0±8\sqrt{85}}{-\frac{40}{3}}
Multiply 2 times -\frac{20}{3}.
t=-\frac{3\sqrt{85}}{5}
Now solve the equation t=\frac{0±8\sqrt{85}}{-\frac{40}{3}} when ± is plus.
t=\frac{3\sqrt{85}}{5}
Now solve the equation t=\frac{0±8\sqrt{85}}{-\frac{40}{3}} when ± is minus.
t=-\frac{3\sqrt{85}}{5} t=\frac{3\sqrt{85}}{5}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}