Solve for n
n\in (-\infty,\frac{1}{3})\cup [\frac{3}{5},\infty)
Share
Copied to clipboard
0\leq \frac{5n-3}{9n-3}
Multiply 0 and 5 to get 0.
\frac{5n-3}{9n-3}\geq 0
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
5n-3\leq 0 9n-3<0
For the quotient to be ≥0, 5n-3 and 9n-3 have to be both ≤0 or both ≥0, and 9n-3 cannot be zero. Consider the case when 5n-3\leq 0 and 9n-3 is negative.
n<\frac{1}{3}
The solution satisfying both inequalities is n<\frac{1}{3}.
5n-3\geq 0 9n-3>0
Consider the case when 5n-3\geq 0 and 9n-3 is positive.
n\geq \frac{3}{5}
The solution satisfying both inequalities is n\geq \frac{3}{5}.
n<\frac{1}{3}\text{; }n\geq \frac{3}{5}
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}