Solve for P
P=-\frac{9075}{12587}\approx -0.720981966
Solve for p
p\in \mathrm{R}
P = -\frac{9075}{12587} = -0.720981965519981
Share
Copied to clipboard
0p^{28}+12587P+9075=0
Multiply 0 and 1 to get 0.
0+12587P+9075=0
Anything times zero gives zero.
9075+12587P=0
Add 0 and 9075 to get 9075.
12587P=-9075
Subtract 9075 from both sides. Anything subtracted from zero gives its negation.
P=\frac{-9075}{12587}
Divide both sides by 12587.
P=-\frac{9075}{12587}
Fraction \frac{-9075}{12587} can be rewritten as -\frac{9075}{12587} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}