00 q \times ( 1 + ( 15 \% / 365 ) ) ( 365 \times 1 ) =
Evaluate
0
Factor
0
Share
Copied to clipboard
0q\left(1+\frac{\frac{15}{100}}{365}\right)\times 365\times 1
Multiply 0 and 0 to get 0.
0q\left(1+\frac{15}{100\times 365}\right)\times 365\times 1
Express \frac{\frac{15}{100}}{365} as a single fraction.
0q\left(1+\frac{15}{36500}\right)\times 365\times 1
Multiply 100 and 365 to get 36500.
0q\left(1+\frac{3}{7300}\right)\times 365\times 1
Reduce the fraction \frac{15}{36500} to lowest terms by extracting and canceling out 5.
0q\left(\frac{7300}{7300}+\frac{3}{7300}\right)\times 365\times 1
Convert 1 to fraction \frac{7300}{7300}.
0q\times \frac{7300+3}{7300}\times 365\times 1
Since \frac{7300}{7300} and \frac{3}{7300} have the same denominator, add them by adding their numerators.
0q\times \frac{7303}{7300}\times 365\times 1
Add 7300 and 3 to get 7303.
0q\times 365\times 1
Multiply 0 and \frac{7303}{7300} to get 0.
0q\times 1
Multiply 0 and 365 to get 0.
0q
Multiply 0 and 1 to get 0.
0
Anything times zero gives zero.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}