0.9x-0.5x-200 = 0.9x \times 0.2 \%
Solve for x
x = \frac{1000000}{1991} = 502\frac{518}{1991} \approx 502.260170768
Graph
Share
Copied to clipboard
0.4x-200=0.9x\times \frac{0.2}{100}
Combine 0.9x and -0.5x to get 0.4x.
0.4x-200=0.9x\times \frac{2}{1000}
Expand \frac{0.2}{100} by multiplying both numerator and the denominator by 10.
0.4x-200=0.9x\times \frac{1}{500}
Reduce the fraction \frac{2}{1000} to lowest terms by extracting and canceling out 2.
0.4x-200=\frac{9}{10}x\times \frac{1}{500}
Convert decimal number 0.9 to fraction \frac{9}{10}.
0.4x-200=\frac{9\times 1}{10\times 500}x
Multiply \frac{9}{10} times \frac{1}{500} by multiplying numerator times numerator and denominator times denominator.
0.4x-200=\frac{9}{5000}x
Do the multiplications in the fraction \frac{9\times 1}{10\times 500}.
0.4x-200-\frac{9}{5000}x=0
Subtract \frac{9}{5000}x from both sides.
\frac{1991}{5000}x-200=0
Combine 0.4x and -\frac{9}{5000}x to get \frac{1991}{5000}x.
\frac{1991}{5000}x=200
Add 200 to both sides. Anything plus zero gives itself.
x=200\times \frac{5000}{1991}
Multiply both sides by \frac{5000}{1991}, the reciprocal of \frac{1991}{5000}.
x=\frac{200\times 5000}{1991}
Express 200\times \frac{5000}{1991} as a single fraction.
x=\frac{1000000}{1991}
Multiply 200 and 5000 to get 1000000.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}