Evaluate
3
Factor
3
Share
Copied to clipboard
\frac{0.98\times 25}{\frac{1\times 6+1}{6}\times 7}
Divide \frac{0.98}{\frac{1\times 6+1}{6}} by \frac{7}{25} by multiplying \frac{0.98}{\frac{1\times 6+1}{6}} by the reciprocal of \frac{7}{25}.
\frac{24.5}{\frac{1\times 6+1}{6}\times 7}
Multiply 0.98 and 25 to get 24.5.
\frac{24.5}{\frac{6+1}{6}\times 7}
Multiply 1 and 6 to get 6.
\frac{24.5}{\frac{7}{6}\times 7}
Add 6 and 1 to get 7.
\frac{24.5}{\frac{7\times 7}{6}}
Express \frac{7}{6}\times 7 as a single fraction.
\frac{24.5}{\frac{49}{6}}
Multiply 7 and 7 to get 49.
24.5\times \frac{6}{49}
Divide 24.5 by \frac{49}{6} by multiplying 24.5 by the reciprocal of \frac{49}{6}.
\frac{49}{2}\times \frac{6}{49}
Convert decimal number 24.5 to fraction \frac{245}{10}. Reduce the fraction \frac{245}{10} to lowest terms by extracting and canceling out 5.
\frac{49\times 6}{2\times 49}
Multiply \frac{49}{2} times \frac{6}{49} by multiplying numerator times numerator and denominator times denominator.
\frac{6}{2}
Cancel out 49 in both numerator and denominator.
3
Divide 6 by 2 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}