0.9 - 70 \% \times 125 X \times 6.3 \% \div ( 30 \% \times 125 X + 5 \% \times 125 X ) =
Evaluate
0.774
Factor
\frac{43 \cdot 3 ^ {2}}{2 ^ {2} \cdot 5 ^ {3}} = 0.774
Share
Copied to clipboard
0.9-\frac{\frac{7}{10}\times 125X\times \frac{6.3}{100}}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Reduce the fraction \frac{70}{100} to lowest terms by extracting and canceling out 10.
0.9-\frac{\frac{7\times 125}{10}X\times \frac{6.3}{100}}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Express \frac{7}{10}\times 125 as a single fraction.
0.9-\frac{\frac{875}{10}X\times \frac{6.3}{100}}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Multiply 7 and 125 to get 875.
0.9-\frac{\frac{175}{2}X\times \frac{6.3}{100}}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Reduce the fraction \frac{875}{10} to lowest terms by extracting and canceling out 5.
0.9-\frac{\frac{175}{2}X\times \frac{63}{1000}}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Expand \frac{6.3}{100} by multiplying both numerator and the denominator by 10.
0.9-\frac{\frac{175\times 63}{2\times 1000}X}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Multiply \frac{175}{2} times \frac{63}{1000} by multiplying numerator times numerator and denominator times denominator.
0.9-\frac{\frac{11025}{2000}X}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Do the multiplications in the fraction \frac{175\times 63}{2\times 1000}.
0.9-\frac{\frac{441}{80}X}{\frac{30}{100}\times 125X+\frac{5}{100}\times 125X}
Reduce the fraction \frac{11025}{2000} to lowest terms by extracting and canceling out 25.
0.9-\frac{\frac{441}{80}X}{\frac{3}{10}\times 125X+\frac{5}{100}\times 125X}
Reduce the fraction \frac{30}{100} to lowest terms by extracting and canceling out 10.
0.9-\frac{\frac{441}{80}X}{\frac{3\times 125}{10}X+\frac{5}{100}\times 125X}
Express \frac{3}{10}\times 125 as a single fraction.
0.9-\frac{\frac{441}{80}X}{\frac{375}{10}X+\frac{5}{100}\times 125X}
Multiply 3 and 125 to get 375.
0.9-\frac{\frac{441}{80}X}{\frac{75}{2}X+\frac{5}{100}\times 125X}
Reduce the fraction \frac{375}{10} to lowest terms by extracting and canceling out 5.
0.9-\frac{\frac{441}{80}X}{\frac{75}{2}X+\frac{1}{20}\times 125X}
Reduce the fraction \frac{5}{100} to lowest terms by extracting and canceling out 5.
0.9-\frac{\frac{441}{80}X}{\frac{75}{2}X+\frac{125}{20}X}
Multiply \frac{1}{20} and 125 to get \frac{125}{20}.
0.9-\frac{\frac{441}{80}X}{\frac{75}{2}X+\frac{25}{4}X}
Reduce the fraction \frac{125}{20} to lowest terms by extracting and canceling out 5.
0.9-\frac{\frac{441}{80}X}{\frac{175}{4}X}
Combine \frac{75}{2}X and \frac{25}{4}X to get \frac{175}{4}X.
0.9-\frac{\frac{441}{80}}{\frac{175}{4}}
Cancel out X in both numerator and denominator.
0.9-\frac{441}{80}\times \frac{4}{175}
Divide \frac{441}{80} by \frac{175}{4} by multiplying \frac{441}{80} by the reciprocal of \frac{175}{4}.
0.9-\frac{441\times 4}{80\times 175}
Multiply \frac{441}{80} times \frac{4}{175} by multiplying numerator times numerator and denominator times denominator.
0.9-\frac{1764}{14000}
Do the multiplications in the fraction \frac{441\times 4}{80\times 175}.
0.9-\frac{63}{500}
Reduce the fraction \frac{1764}{14000} to lowest terms by extracting and canceling out 28.
\frac{9}{10}-\frac{63}{500}
Convert decimal number 0.9 to fraction \frac{9}{10}.
\frac{450}{500}-\frac{63}{500}
Least common multiple of 10 and 500 is 500. Convert \frac{9}{10} and \frac{63}{500} to fractions with denominator 500.
\frac{450-63}{500}
Since \frac{450}{500} and \frac{63}{500} have the same denominator, subtract them by subtracting their numerators.
\frac{387}{500}
Subtract 63 from 450 to get 387.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}