Solve for t
t=\frac{301\log_{2}\left(\frac{5}{17}\right)}{20}+30.1\approx 3.528702067
Share
Copied to clipboard
\frac{0.85}{1}=0.5^{\frac{t}{15.05}}
Divide both sides by 1.
\frac{85}{100}=0.5^{\frac{t}{15.05}}
Expand \frac{0.85}{1} by multiplying both numerator and the denominator by 100.
\frac{17}{20}=0.5^{\frac{t}{15.05}}
Reduce the fraction \frac{85}{100} to lowest terms by extracting and canceling out 5.
0.5^{\frac{t}{15.05}}=\frac{17}{20}
Swap sides so that all variable terms are on the left hand side.
0.5^{\frac{20}{301}t}=0.85
Use the rules of exponents and logarithms to solve the equation.
\log(0.5^{\frac{20}{301}t})=\log(0.85)
Take the logarithm of both sides of the equation.
\frac{20}{301}t\log(0.5)=\log(0.85)
The logarithm of a number raised to a power is the power times the logarithm of the number.
\frac{20}{301}t=\frac{\log(0.85)}{\log(0.5)}
Divide both sides by \log(0.5).
\frac{20}{301}t=\log_{0.5}\left(0.85\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
t=-\frac{\frac{\ln(\frac{17}{20})}{\ln(2)}}{\frac{20}{301}}
Divide both sides of the equation by \frac{20}{301}, which is the same as multiplying both sides by the reciprocal of the fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}