Skip to main content
Evaluate
Tick mark Image

Share

0.822+\frac{\frac{0.0079\left(-15.2\right)}{0.822+16.2}+\frac{0.1321\left(1-5.2\right)}{5.2+0.822}+\frac{0.0849\left(1-2.6\right)}{0.822+2.6}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract 16.2 from 1 to get -15.2.
0.822+\frac{\frac{-0.12008}{0.822+16.2}+\frac{0.1321\left(1-5.2\right)}{5.2+0.822}+\frac{0.0849\left(1-2.6\right)}{0.822+2.6}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Multiply 0.0079 and -15.2 to get -0.12008.
0.822+\frac{\frac{-0.12008}{17.022}+\frac{0.1321\left(1-5.2\right)}{5.2+0.822}+\frac{0.0849\left(1-2.6\right)}{0.822+2.6}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add 0.822 and 16.2 to get 17.022.
0.822+\frac{\frac{-12008}{1702200}+\frac{0.1321\left(1-5.2\right)}{5.2+0.822}+\frac{0.0849\left(1-2.6\right)}{0.822+2.6}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Expand \frac{-0.12008}{17.022} by multiplying both numerator and the denominator by 100000.
0.822+\frac{-\frac{1501}{212775}+\frac{0.1321\left(1-5.2\right)}{5.2+0.822}+\frac{0.0849\left(1-2.6\right)}{0.822+2.6}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Reduce the fraction \frac{-12008}{1702200} to lowest terms by extracting and canceling out 8.
0.822+\frac{-\frac{1501}{212775}+\frac{0.1321\left(-4.2\right)}{5.2+0.822}+\frac{0.0849\left(1-2.6\right)}{0.822+2.6}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract 5.2 from 1 to get -4.2.
0.822+\frac{-\frac{1501}{212775}+\frac{-0.55482}{5.2+0.822}+\frac{0.0849\left(1-2.6\right)}{0.822+2.6}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Multiply 0.1321 and -4.2 to get -0.55482.
0.822+\frac{-\frac{1501}{212775}+\frac{-0.55482}{6.022}+\frac{0.0849\left(1-2.6\right)}{0.822+2.6}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add 5.2 and 0.822 to get 6.022.
0.822+\frac{-\frac{1501}{212775}+\frac{-55482}{602200}+\frac{0.0849\left(1-2.6\right)}{0.822+2.6}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Expand \frac{-0.55482}{6.022} by multiplying both numerator and the denominator by 100000.
0.822+\frac{-\frac{1501}{212775}-\frac{27741}{301100}+\frac{0.0849\left(1-2.6\right)}{0.822+2.6}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Reduce the fraction \frac{-55482}{602200} to lowest terms by extracting and canceling out 2.
0.822+\frac{-\frac{50836339}{512532420}+\frac{0.0849\left(1-2.6\right)}{0.822+2.6}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract \frac{27741}{301100} from -\frac{1501}{212775} to get -\frac{50836339}{512532420}.
0.822+\frac{-\frac{50836339}{512532420}+\frac{0.0849\left(-1.6\right)}{0.822+2.6}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract 2.6 from 1 to get -1.6.
0.822+\frac{-\frac{50836339}{512532420}+\frac{-0.13584}{0.822+2.6}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Multiply 0.0849 and -1.6 to get -0.13584.
0.822+\frac{-\frac{50836339}{512532420}+\frac{-0.13584}{3.422}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add 0.822 and 2.6 to get 3.422.
0.822+\frac{-\frac{50836339}{512532420}+\frac{-13584}{342200}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Expand \frac{-0.13584}{3.422} by multiplying both numerator and the denominator by 100000.
0.822+\frac{-\frac{50836339}{512532420}-\frac{1698}{42775}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Reduce the fraction \frac{-13584}{342200} to lowest terms by extracting and canceling out 8.
0.822+\frac{-\frac{608960889977}{4384714853100}+\frac{0.269\left(1-1.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract \frac{1698}{42775} from -\frac{50836339}{512532420} to get -\frac{608960889977}{4384714853100}.
0.822+\frac{-\frac{608960889977}{4384714853100}+\frac{0.269\left(-0.98\right)}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract 1.98 from 1 to get -0.98.
0.822+\frac{-\frac{608960889977}{4384714853100}+\frac{-0.26362}{0.822+1.98}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Multiply 0.269 and -0.98 to get -0.26362.
0.822+\frac{-\frac{608960889977}{4384714853100}+\frac{-0.26362}{2.802}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add 0.822 and 1.98 to get 2.802.
0.822+\frac{-\frac{608960889977}{4384714853100}+\frac{-26362}{280200}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Expand \frac{-0.26362}{2.802} by multiplying both numerator and the denominator by 100000.
0.822+\frac{-\frac{608960889977}{4384714853100}-\frac{13181}{140100}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Reduce the fraction \frac{-26362}{280200} to lowest terms by extracting and canceling out 2.
0.822+\frac{-\frac{39752874212358}{170638486366475}+\frac{0.0589\left(1-0.91\right)}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract \frac{13181}{140100} from -\frac{608960889977}{4384714853100} to get -\frac{39752874212358}{170638486366475}.
0.822+\frac{-\frac{39752874212358}{170638486366475}+\frac{0.0589\times 0.09}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract 0.91 from 1 to get 0.09.
0.822+\frac{-\frac{39752874212358}{170638486366475}+\frac{0.005301}{0.822+0.91}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Multiply 0.0589 and 0.09 to get 0.005301.
0.822+\frac{-\frac{39752874212358}{170638486366475}+\frac{0.005301}{1.732}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add 0.822 and 0.91 to get 1.732.
0.822+\frac{-\frac{39752874212358}{170638486366475}+\frac{5301}{1732000}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Expand \frac{0.005301}{1.732} by multiplying both numerator and the denominator by 1000000.
0.822+\frac{-\frac{2717896940783014881}{11821834335469388000}+\frac{0.1321\left(1-0.72\right)}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add -\frac{39752874212358}{170638486366475} and \frac{5301}{1732000} to get -\frac{2717896940783014881}{11821834335469388000}.
0.822+\frac{-\frac{2717896940783014881}{11821834335469388000}+\frac{0.1321\times 0.28}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract 0.72 from 1 to get 0.28.
0.822+\frac{-\frac{2717896940783014881}{11821834335469388000}+\frac{0.036988}{0.72+0.822}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Multiply 0.1321 and 0.28 to get 0.036988.
0.822+\frac{-\frac{2717896940783014881}{11821834335469388000}+\frac{0.036988}{1.542}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add 0.72 and 0.822 to get 1.542.
0.822+\frac{-\frac{2717896940783014881}{11821834335469388000}+\frac{36988}{1542000}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Expand \frac{0.036988}{1.542} by multiplying both numerator and the denominator by 1000000.
0.822+\frac{-\frac{2717896940783014881}{11821834335469388000}+\frac{9247}{385500}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Reduce the fraction \frac{36988}{1542000} to lowest terms by extracting and canceling out 4.
0.822+\frac{-\frac{1876865537143533611579}{9114634272646898148000}+\frac{0.3151\left(1-0.28\right)}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add -\frac{2717896940783014881}{11821834335469388000} and \frac{9247}{385500} to get -\frac{1876865537143533611579}{9114634272646898148000}.
0.822+\frac{-\frac{1876865537143533611579}{9114634272646898148000}+\frac{0.3151\times 0.72}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract 0.28 from 1 to get 0.72.
0.822+\frac{-\frac{1876865537143533611579}{9114634272646898148000}+\frac{0.226872}{0.822+0.28}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Multiply 0.3151 and 0.72 to get 0.226872.
0.822+\frac{-\frac{1876865537143533611579}{9114634272646898148000}+\frac{0.226872}{1.102}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add 0.822 and 0.28 to get 1.102.
0.822+\frac{-\frac{1876865537143533611579}{9114634272646898148000}+\frac{226872}{1102000}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Expand \frac{0.226872}{1.102} by multiplying both numerator and the denominator by 1000000.
0.822+\frac{-\frac{1876865537143533611579}{9114634272646898148000}+\frac{28359}{137750}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Reduce the fraction \frac{226872}{1102000} to lowest terms by extracting and canceling out 8.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{\frac{0.0079\left(1-16.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add -\frac{1876865537143533611579}{9114634272646898148000} and \frac{28359}{137750} to get -\frac{7767503934947643569}{173178051180291064812000}.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{\frac{0.0079\left(-15.2\right)}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract 16.2 from 1 to get -15.2.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{\frac{-0.12008}{\left(0.822+16.2\right)^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Multiply 0.0079 and -15.2 to get -0.12008.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{\frac{-0.12008}{17.022^{2}}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add 0.822 and 16.2 to get 17.022.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{\frac{-0.12008}{289.748484}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Calculate 17.022 to the power of 2 and get 289.748484.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{\frac{-120080}{289748484}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Expand \frac{-0.12008}{289.748484} by multiplying both numerator and the denominator by 1000000.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{30020}{72437121}+\frac{0.1321\left(1-5.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Reduce the fraction \frac{-120080}{289748484} to lowest terms by extracting and canceling out 4.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{30020}{72437121}+\frac{0.1321\left(-4.2\right)}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract 5.2 from 1 to get -4.2.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{30020}{72437121}+\frac{-0.55482}{\left(0.822+5.2\right)^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Multiply 0.1321 and -4.2 to get -0.55482.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{30020}{72437121}+\frac{-0.55482}{6.022^{2}}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add 0.822 and 5.2 to get 6.022.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{30020}{72437121}+\frac{-0.55482}{36.264484}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Calculate 6.022 to the power of 2 and get 36.264484.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{30020}{72437121}+\frac{-554820}{36264484}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Expand \frac{-0.55482}{36.264484} by multiplying both numerator and the denominator by 1000000.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{30020}{72437121}-\frac{138705}{9066121}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Reduce the fraction \frac{-554820}{36264484} to lowest terms by extracting and canceling out 4.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{10319555820725}{656723703877641}+\frac{0.0849\left(1-2.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract \frac{138705}{9066121} from -\frac{30020}{72437121} to get -\frac{10319555820725}{656723703877641}.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{10319555820725}{656723703877641}+\frac{0.0849\left(-1.6\right)}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract 2.6 from 1 to get -1.6.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{10319555820725}{656723703877641}+\frac{-0.13584}{\left(0.822+2.6\right)^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Multiply 0.0849 and -1.6 to get -0.13584.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{10319555820725}{656723703877641}+\frac{-0.13584}{3.422^{2}}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add 0.822 and 2.6 to get 3.422.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{10319555820725}{656723703877641}+\frac{-0.13584}{11.710084}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Calculate 3.422 to the power of 2 and get 11.710084.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{10319555820725}{656723703877641}+\frac{-135840}{11710084}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Expand \frac{-0.13584}{11.710084} by multiplying both numerator and the denominator by 1000000.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{10319555820725}{656723703877641}-\frac{33960}{2927521}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Reduce the fraction \frac{-135840}{11710084} to lowest terms by extracting and canceling out 4.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{52513053359529361085}{1922572434299575457961}+\frac{0.269\left(1-1.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract \frac{33960}{2927521} from -\frac{10319555820725}{656723703877641} to get -\frac{52513053359529361085}{1922572434299575457961}.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{52513053359529361085}{1922572434299575457961}+\frac{0.269\left(-0.98\right)}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract 1.98 from 1 to get -0.98.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{52513053359529361085}{1922572434299575457961}+\frac{-0.26362}{\left(0.822+1.98\right)^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Multiply 0.269 and -0.98 to get -0.26362.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{52513053359529361085}{1922572434299575457961}+\frac{-0.26362}{2.802^{2}}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add 0.822 and 1.98 to get 2.802.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{52513053359529361085}{1922572434299575457961}+\frac{-0.26362}{7.851204}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Calculate 2.802 to the power of 2 and get 7.851204.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{52513053359529361085}{1922572434299575457961}+\frac{-263620}{7851204}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Expand \frac{-0.26362}{7.851204} by multiplying both numerator and the denominator by 1000000.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{52513053359529361085}{1922572434299575457961}-\frac{65905}{1962801}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Reduce the fraction \frac{-263620}{7851204} to lowest terms by extracting and canceling out 4.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{8510363330727818889774770}{139763966541320037350418843}+\frac{0.0589\left(1-0.91\right)}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract \frac{65905}{1962801} from -\frac{52513053359529361085}{1922572434299575457961} to get -\frac{8510363330727818889774770}{139763966541320037350418843}.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{8510363330727818889774770}{139763966541320037350418843}+\frac{0.0589\times 0.09}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract 0.91 from 1 to get 0.09.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{8510363330727818889774770}{139763966541320037350418843}+\frac{0.005301}{\left(0.91+0.822\right)^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Multiply 0.0589 and 0.09 to get 0.005301.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{8510363330727818889774770}{139763966541320037350418843}+\frac{0.005301}{1.732^{2}}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add 0.91 and 0.822 to get 1.732.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{8510363330727818889774770}{139763966541320037350418843}+\frac{0.005301}{2.999824}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Calculate 1.732 to the power of 2 and get 2.999824.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{8510363330727818889774770}{139763966541320037350418843}+\frac{5301}{2999824}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Expand \frac{0.005301}{2.999824} by multiplying both numerator and the denominator by 1000000.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{24788703381601711055205139353737}{419267301165848839724682855283632}+\frac{0.1321\left(1-0.72\right)}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add -\frac{8510363330727818889774770}{139763966541320037350418843} and \frac{5301}{2999824} to get -\frac{24788703381601711055205139353737}{419267301165848839724682855283632}.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{24788703381601711055205139353737}{419267301165848839724682855283632}+\frac{0.1321\times 0.28}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Subtract 0.72 from 1 to get 0.28.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{24788703381601711055205139353737}{419267301165848839724682855283632}+\frac{0.036988}{\left(0.72+0.822\right)^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Multiply 0.1321 and 0.28 to get 0.036988.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{24788703381601711055205139353737}{419267301165848839724682855283632}+\frac{0.036988}{1.542^{2}}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add 0.72 and 0.822 to get 1.542.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{24788703381601711055205139353737}{419267301165848839724682855283632}+\frac{0.036988}{2.377764}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Calculate 1.542 to the power of 2 and get 2.377764.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{24788703381601711055205139353737}{419267301165848839724682855283632}+\frac{36988}{2377764}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Expand \frac{0.036988}{2.377764} by multiplying both numerator and the denominator by 1000000.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{24788703381601711055205139353737}{419267301165848839724682855283632}+\frac{9247}{594441}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Reduce the fraction \frac{36988}{2377764} to lowest terms by extracting and canceling out 4.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{3619485630994032833477685293255676971}{83076557924109450044926733725885829904}+\frac{0.3151\left(1-0.28\right)}{\left(0.28+0.822\right)^{2}}+0}
Add -\frac{24788703381601711055205139353737}{419267301165848839724682855283632} and \frac{9247}{594441} to get -\frac{3619485630994032833477685293255676971}{83076557924109450044926733725885829904}.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{3619485630994032833477685293255676971}{83076557924109450044926733725885829904}+\frac{0.3151\times 0.72}{\left(0.28+0.822\right)^{2}}+0}
Subtract 0.28 from 1 to get 0.72.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{3619485630994032833477685293255676971}{83076557924109450044926733725885829904}+\frac{0.226872}{\left(0.28+0.822\right)^{2}}+0}
Multiply 0.3151 and 0.72 to get 0.226872.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{3619485630994032833477685293255676971}{83076557924109450044926733725885829904}+\frac{0.226872}{1.102^{2}}+0}
Add 0.28 and 0.822 to get 1.102.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{3619485630994032833477685293255676971}{83076557924109450044926733725885829904}+\frac{0.226872}{1.214404}+0}
Calculate 1.102 to the power of 2 and get 1.214404.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{3619485630994032833477685293255676971}{83076557924109450044926733725885829904}+\frac{226872}{1214404}+0}
Expand \frac{0.226872}{1.214404} by multiplying both numerator and the denominator by 1000000.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{-\frac{3619485630994032833477685293255676971}{83076557924109450044926733725885829904}+\frac{56718}{303601}+0}
Reduce the fraction \frac{226872}{1214404} to lowest terms by extracting and canceling out 4.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{\frac{4296143585355791231119495541910910483261}{29990637410603511466218550875044784595344}+0}
Add -\frac{3619485630994032833477685293255676971}{83076557924109450044926733725885829904} and \frac{56718}{303601} to get \frac{4296143585355791231119495541910910483261}{29990637410603511466218550875044784595344}.
0.822+\frac{-\frac{7767503934947643569}{173178051180291064812000}}{\frac{4296143585355791231119495541910910483261}{29990637410603511466218550875044784595344}}
Add \frac{4296143585355791231119495541910910483261}{29990637410603511466218550875044784595344} and 0 to get \frac{4296143585355791231119495541910910483261}{29990637410603511466218550875044784595344}.
0.822-\frac{7767503934947643569}{173178051180291064812000}\times \frac{29990637410603511466218550875044784595344}{4296143585355791231119495541910910483261}
Divide -\frac{7767503934947643569}{173178051180291064812000} by \frac{4296143585355791231119495541910910483261}{29990637410603511466218550875044784595344} by multiplying -\frac{7767503934947643569}{173178051180291064812000} by the reciprocal of \frac{4296143585355791231119495541910910483261}{29990637410603511466218550875044784595344}.
0.822-\frac{336290298497368813921303664381313498507}{1074035896338947807779873885477727620815250}
Multiply -\frac{7767503934947643569}{173178051180291064812000} and \frac{29990637410603511466218550875044784595344}{4296143585355791231119495541910910483261} to get -\frac{336290298497368813921303664381313498507}{1074035896338947807779873885477727620815250}.
\frac{1765042432984235458362270060396621581623257}{2148071792677895615559747770955455241630500}
Subtract \frac{336290298497368813921303664381313498507}{1074035896338947807779873885477727620815250} from 0.822 to get \frac{1765042432984235458362270060396621581623257}{2148071792677895615559747770955455241630500}.