0.8 - \frac { 8 } { 15 } + 2 \frac { 2 } { 3 } \quad \text { (o) } 5 \frac { 1 } { 4 } \times 2.8 - 13
Evaluate
\frac{196o}{5}-\frac{191}{15}
Expand
\frac{196o}{5}-\frac{191}{15}
Share
Copied to clipboard
\frac{4}{5}-\frac{8}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Convert decimal number 0.8 to fraction \frac{8}{10}. Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
\frac{12}{15}-\frac{8}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Least common multiple of 5 and 15 is 15. Convert \frac{4}{5} and \frac{8}{15} to fractions with denominator 15.
\frac{12-8}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Since \frac{12}{15} and \frac{8}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Subtract 8 from 12 to get 4.
\frac{4}{15}+\frac{6+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Multiply 2 and 3 to get 6.
\frac{4}{15}+\frac{8}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Add 6 and 2 to get 8.
\frac{4}{15}+\frac{8}{3}o\times \frac{20+1}{4}\times 2.8-13
Multiply 5 and 4 to get 20.
\frac{4}{15}+\frac{8}{3}o\times \frac{21}{4}\times 2.8-13
Add 20 and 1 to get 21.
\frac{4}{15}+\frac{8\times 21}{3\times 4}o\times 2.8-13
Multiply \frac{8}{3} times \frac{21}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{15}+\frac{168}{12}o\times 2.8-13
Do the multiplications in the fraction \frac{8\times 21}{3\times 4}.
\frac{4}{15}+14o\times 2.8-13
Divide 168 by 12 to get 14.
\frac{4}{15}+39.2o-13
Multiply 14 and 2.8 to get 39.2.
\frac{4}{15}+39.2o-\frac{195}{15}
Convert 13 to fraction \frac{195}{15}.
\frac{4-195}{15}+39.2o
Since \frac{4}{15} and \frac{195}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{191}{15}+39.2o
Subtract 195 from 4 to get -191.
\frac{4}{5}-\frac{8}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Convert decimal number 0.8 to fraction \frac{8}{10}. Reduce the fraction \frac{8}{10} to lowest terms by extracting and canceling out 2.
\frac{12}{15}-\frac{8}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Least common multiple of 5 and 15 is 15. Convert \frac{4}{5} and \frac{8}{15} to fractions with denominator 15.
\frac{12-8}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Since \frac{12}{15} and \frac{8}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{15}+\frac{2\times 3+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Subtract 8 from 12 to get 4.
\frac{4}{15}+\frac{6+2}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Multiply 2 and 3 to get 6.
\frac{4}{15}+\frac{8}{3}o\times \frac{5\times 4+1}{4}\times 2.8-13
Add 6 and 2 to get 8.
\frac{4}{15}+\frac{8}{3}o\times \frac{20+1}{4}\times 2.8-13
Multiply 5 and 4 to get 20.
\frac{4}{15}+\frac{8}{3}o\times \frac{21}{4}\times 2.8-13
Add 20 and 1 to get 21.
\frac{4}{15}+\frac{8\times 21}{3\times 4}o\times 2.8-13
Multiply \frac{8}{3} times \frac{21}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{4}{15}+\frac{168}{12}o\times 2.8-13
Do the multiplications in the fraction \frac{8\times 21}{3\times 4}.
\frac{4}{15}+14o\times 2.8-13
Divide 168 by 12 to get 14.
\frac{4}{15}+39.2o-13
Multiply 14 and 2.8 to get 39.2.
\frac{4}{15}+39.2o-\frac{195}{15}
Convert 13 to fraction \frac{195}{15}.
\frac{4-195}{15}+39.2o
Since \frac{4}{15} and \frac{195}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{191}{15}+39.2o
Subtract 195 from 4 to get -191.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}