Solve for y
y\leq 41.875
Graph
Share
Copied to clipboard
0.8\left(8y+300-6y\right)\leq 400-10\times 11+17
Use the distributive property to multiply 6 by 50-y.
0.8\left(2y+300\right)\leq 400-10\times 11+17
Combine 8y and -6y to get 2y.
1.6y+240\leq 400-10\times 11+17
Use the distributive property to multiply 0.8 by 2y+300.
1.6y+240\leq 400-110+17
Multiply 10 and 11 to get 110.
1.6y+240\leq 290+17
Subtract 110 from 400 to get 290.
1.6y+240\leq 307
Add 290 and 17 to get 307.
1.6y\leq 307-240
Subtract 240 from both sides.
1.6y\leq 67
Subtract 240 from 307 to get 67.
y\leq \frac{67}{1.6}
Divide both sides by 1.6. Since 1.6 is positive, the inequality direction remains the same.
y\leq \frac{670}{16}
Expand \frac{67}{1.6} by multiplying both numerator and the denominator by 10.
y\leq \frac{335}{8}
Reduce the fraction \frac{670}{16} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}