Solve for x
x=4.84
Graph
Share
Copied to clipboard
\frac{80}{375}=\frac{5-x}{0.75}
Expand \frac{0.8}{3.75} by multiplying both numerator and the denominator by 100.
\frac{16}{75}=\frac{5-x}{0.75}
Reduce the fraction \frac{80}{375} to lowest terms by extracting and canceling out 5.
\frac{16}{75}=\frac{5}{0.75}+\frac{-x}{0.75}
Divide each term of 5-x by 0.75 to get \frac{5}{0.75}+\frac{-x}{0.75}.
\frac{16}{75}=\frac{500}{75}+\frac{-x}{0.75}
Expand \frac{5}{0.75} by multiplying both numerator and the denominator by 100.
\frac{16}{75}=\frac{20}{3}+\frac{-x}{0.75}
Reduce the fraction \frac{500}{75} to lowest terms by extracting and canceling out 25.
\frac{16}{75}=\frac{20}{3}-\frac{4}{3}x
Divide -x by 0.75 to get -\frac{4}{3}x.
\frac{20}{3}-\frac{4}{3}x=\frac{16}{75}
Swap sides so that all variable terms are on the left hand side.
-\frac{4}{3}x=\frac{16}{75}-\frac{20}{3}
Subtract \frac{20}{3} from both sides.
-\frac{4}{3}x=\frac{16}{75}-\frac{500}{75}
Least common multiple of 75 and 3 is 75. Convert \frac{16}{75} and \frac{20}{3} to fractions with denominator 75.
-\frac{4}{3}x=\frac{16-500}{75}
Since \frac{16}{75} and \frac{500}{75} have the same denominator, subtract them by subtracting their numerators.
-\frac{4}{3}x=-\frac{484}{75}
Subtract 500 from 16 to get -484.
x=\frac{-\frac{484}{75}}{-\frac{4}{3}}
Divide both sides by -\frac{4}{3}.
x=\frac{-484}{75\left(-\frac{4}{3}\right)}
Express \frac{-\frac{484}{75}}{-\frac{4}{3}} as a single fraction.
x=\frac{-484}{-100}
Multiply 75 and -\frac{4}{3} to get -100.
x=\frac{121}{25}
Reduce the fraction \frac{-484}{-100} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}