Solve for c
c=\frac{\sqrt{1585}}{100}\approx 0.398120585
c=-\frac{\sqrt{1585}}{100}\approx -0.398120585
Share
Copied to clipboard
0.8=\frac{0.36+0.65^{2}-c^{2}}{0.6\times 0.65\times 2}
Calculate 0.6 to the power of 2 and get 0.36.
0.8=\frac{0.36+0.4225-c^{2}}{0.6\times 0.65\times 2}
Calculate 0.65 to the power of 2 and get 0.4225.
0.8=\frac{0.7825-c^{2}}{0.6\times 0.65\times 2}
Add 0.36 and 0.4225 to get 0.7825.
0.8=\frac{0.7825-c^{2}}{0.39\times 2}
Multiply 0.6 and 0.65 to get 0.39.
0.8=\frac{0.7825-c^{2}}{0.78}
Multiply 0.39 and 2 to get 0.78.
0.8=\frac{0.7825}{0.78}+\frac{-c^{2}}{0.78}
Divide each term of 0.7825-c^{2} by 0.78 to get \frac{0.7825}{0.78}+\frac{-c^{2}}{0.78}.
0.8=\frac{7825}{7800}+\frac{-c^{2}}{0.78}
Expand \frac{0.7825}{0.78} by multiplying both numerator and the denominator by 10000.
0.8=\frac{313}{312}+\frac{-c^{2}}{0.78}
Reduce the fraction \frac{7825}{7800} to lowest terms by extracting and canceling out 25.
0.8=\frac{313}{312}-\frac{50}{39}c^{2}
Divide -c^{2} by 0.78 to get -\frac{50}{39}c^{2}.
\frac{313}{312}-\frac{50}{39}c^{2}=0.8
Swap sides so that all variable terms are on the left hand side.
-\frac{50}{39}c^{2}=0.8-\frac{313}{312}
Subtract \frac{313}{312} from both sides.
-\frac{50}{39}c^{2}=-\frac{317}{1560}
Subtract \frac{313}{312} from 0.8 to get -\frac{317}{1560}.
c^{2}=\frac{-\frac{317}{1560}}{-\frac{50}{39}}
Divide both sides by -\frac{50}{39}.
c^{2}=\frac{-317}{1560\left(-\frac{50}{39}\right)}
Express \frac{-\frac{317}{1560}}{-\frac{50}{39}} as a single fraction.
c^{2}=\frac{-317}{-2000}
Multiply 1560 and -\frac{50}{39} to get -2000.
c^{2}=\frac{317}{2000}
Fraction \frac{-317}{-2000} can be simplified to \frac{317}{2000} by removing the negative sign from both the numerator and the denominator.
c=\frac{\sqrt{1585}}{100} c=-\frac{\sqrt{1585}}{100}
Take the square root of both sides of the equation.
0.8=\frac{0.36+0.65^{2}-c^{2}}{0.6\times 0.65\times 2}
Calculate 0.6 to the power of 2 and get 0.36.
0.8=\frac{0.36+0.4225-c^{2}}{0.6\times 0.65\times 2}
Calculate 0.65 to the power of 2 and get 0.4225.
0.8=\frac{0.7825-c^{2}}{0.6\times 0.65\times 2}
Add 0.36 and 0.4225 to get 0.7825.
0.8=\frac{0.7825-c^{2}}{0.39\times 2}
Multiply 0.6 and 0.65 to get 0.39.
0.8=\frac{0.7825-c^{2}}{0.78}
Multiply 0.39 and 2 to get 0.78.
0.8=\frac{0.7825}{0.78}+\frac{-c^{2}}{0.78}
Divide each term of 0.7825-c^{2} by 0.78 to get \frac{0.7825}{0.78}+\frac{-c^{2}}{0.78}.
0.8=\frac{7825}{7800}+\frac{-c^{2}}{0.78}
Expand \frac{0.7825}{0.78} by multiplying both numerator and the denominator by 10000.
0.8=\frac{313}{312}+\frac{-c^{2}}{0.78}
Reduce the fraction \frac{7825}{7800} to lowest terms by extracting and canceling out 25.
0.8=\frac{313}{312}-\frac{50}{39}c^{2}
Divide -c^{2} by 0.78 to get -\frac{50}{39}c^{2}.
\frac{313}{312}-\frac{50}{39}c^{2}=0.8
Swap sides so that all variable terms are on the left hand side.
\frac{313}{312}-\frac{50}{39}c^{2}-0.8=0
Subtract 0.8 from both sides.
\frac{317}{1560}-\frac{50}{39}c^{2}=0
Subtract 0.8 from \frac{313}{312} to get \frac{317}{1560}.
-\frac{50}{39}c^{2}+\frac{317}{1560}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
c=\frac{0±\sqrt{0^{2}-4\left(-\frac{50}{39}\right)\times \frac{317}{1560}}}{2\left(-\frac{50}{39}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{50}{39} for a, 0 for b, and \frac{317}{1560} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\left(-\frac{50}{39}\right)\times \frac{317}{1560}}}{2\left(-\frac{50}{39}\right)}
Square 0.
c=\frac{0±\sqrt{\frac{200}{39}\times \frac{317}{1560}}}{2\left(-\frac{50}{39}\right)}
Multiply -4 times -\frac{50}{39}.
c=\frac{0±\sqrt{\frac{1585}{1521}}}{2\left(-\frac{50}{39}\right)}
Multiply \frac{200}{39} times \frac{317}{1560} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
c=\frac{0±\frac{\sqrt{1585}}{39}}{2\left(-\frac{50}{39}\right)}
Take the square root of \frac{1585}{1521}.
c=\frac{0±\frac{\sqrt{1585}}{39}}{-\frac{100}{39}}
Multiply 2 times -\frac{50}{39}.
c=-\frac{\sqrt{1585}}{100}
Now solve the equation c=\frac{0±\frac{\sqrt{1585}}{39}}{-\frac{100}{39}} when ± is plus.
c=\frac{\sqrt{1585}}{100}
Now solve the equation c=\frac{0±\frac{\sqrt{1585}}{39}}{-\frac{100}{39}} when ± is minus.
c=-\frac{\sqrt{1585}}{100} c=\frac{\sqrt{1585}}{100}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}