Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

525x\left(1-\frac{x}{750}\right)-15000=0
Multiply both sides of the equation by 750.
525x+525x\left(-\frac{x}{750}\right)-15000=0
Use the distributive property to multiply 525x by 1-\frac{x}{750}.
525x+\frac{-525x}{750}x-15000=0
Express 525\left(-\frac{x}{750}\right) as a single fraction.
525x-\frac{7}{10}xx-15000=0
Divide -525x by 750 to get -\frac{7}{10}x.
525x-\frac{7}{10}x^{2}-15000=0
Multiply x and x to get x^{2}.
-\frac{7}{10}x^{2}+525x-15000=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-525±\sqrt{525^{2}-4\left(-\frac{7}{10}\right)\left(-15000\right)}}{2\left(-\frac{7}{10}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{7}{10} for a, 525 for b, and -15000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-525±\sqrt{275625-4\left(-\frac{7}{10}\right)\left(-15000\right)}}{2\left(-\frac{7}{10}\right)}
Square 525.
x=\frac{-525±\sqrt{275625+\frac{14}{5}\left(-15000\right)}}{2\left(-\frac{7}{10}\right)}
Multiply -4 times -\frac{7}{10}.
x=\frac{-525±\sqrt{275625-42000}}{2\left(-\frac{7}{10}\right)}
Multiply \frac{14}{5} times -15000.
x=\frac{-525±\sqrt{233625}}{2\left(-\frac{7}{10}\right)}
Add 275625 to -42000.
x=\frac{-525±5\sqrt{9345}}{2\left(-\frac{7}{10}\right)}
Take the square root of 233625.
x=\frac{-525±5\sqrt{9345}}{-\frac{7}{5}}
Multiply 2 times -\frac{7}{10}.
x=\frac{5\sqrt{9345}-525}{-\frac{7}{5}}
Now solve the equation x=\frac{-525±5\sqrt{9345}}{-\frac{7}{5}} when ± is plus. Add -525 to 5\sqrt{9345}.
x=-\frac{25\sqrt{9345}}{7}+375
Divide -525+5\sqrt{9345} by -\frac{7}{5} by multiplying -525+5\sqrt{9345} by the reciprocal of -\frac{7}{5}.
x=\frac{-5\sqrt{9345}-525}{-\frac{7}{5}}
Now solve the equation x=\frac{-525±5\sqrt{9345}}{-\frac{7}{5}} when ± is minus. Subtract 5\sqrt{9345} from -525.
x=\frac{25\sqrt{9345}}{7}+375
Divide -525-5\sqrt{9345} by -\frac{7}{5} by multiplying -525-5\sqrt{9345} by the reciprocal of -\frac{7}{5}.
x=-\frac{25\sqrt{9345}}{7}+375 x=\frac{25\sqrt{9345}}{7}+375
The equation is now solved.
525x\left(1-\frac{x}{750}\right)-15000=0
Multiply both sides of the equation by 750.
525x+525x\left(-\frac{x}{750}\right)-15000=0
Use the distributive property to multiply 525x by 1-\frac{x}{750}.
525x+\frac{-525x}{750}x-15000=0
Express 525\left(-\frac{x}{750}\right) as a single fraction.
525x-\frac{7}{10}xx-15000=0
Divide -525x by 750 to get -\frac{7}{10}x.
525x-\frac{7}{10}x^{2}-15000=0
Multiply x and x to get x^{2}.
525x-\frac{7}{10}x^{2}=15000
Add 15000 to both sides. Anything plus zero gives itself.
-\frac{7}{10}x^{2}+525x=15000
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{7}{10}x^{2}+525x}{-\frac{7}{10}}=\frac{15000}{-\frac{7}{10}}
Divide both sides of the equation by -\frac{7}{10}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{525}{-\frac{7}{10}}x=\frac{15000}{-\frac{7}{10}}
Dividing by -\frac{7}{10} undoes the multiplication by -\frac{7}{10}.
x^{2}-750x=\frac{15000}{-\frac{7}{10}}
Divide 525 by -\frac{7}{10} by multiplying 525 by the reciprocal of -\frac{7}{10}.
x^{2}-750x=-\frac{150000}{7}
Divide 15000 by -\frac{7}{10} by multiplying 15000 by the reciprocal of -\frac{7}{10}.
x^{2}-750x+\left(-375\right)^{2}=-\frac{150000}{7}+\left(-375\right)^{2}
Divide -750, the coefficient of the x term, by 2 to get -375. Then add the square of -375 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-750x+140625=-\frac{150000}{7}+140625
Square -375.
x^{2}-750x+140625=\frac{834375}{7}
Add -\frac{150000}{7} to 140625.
\left(x-375\right)^{2}=\frac{834375}{7}
Factor x^{2}-750x+140625. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-375\right)^{2}}=\sqrt{\frac{834375}{7}}
Take the square root of both sides of the equation.
x-375=\frac{25\sqrt{9345}}{7} x-375=-\frac{25\sqrt{9345}}{7}
Simplify.
x=\frac{25\sqrt{9345}}{7}+375 x=-\frac{25\sqrt{9345}}{7}+375
Add 375 to both sides of the equation.