0.75 x - 1800 \geq 1800 \times 10 \%
Solve for x
x\geq 2640
Graph
Share
Copied to clipboard
0.75x-1800\geq 1800\times \frac{1}{10}
Reduce the fraction \frac{10}{100} to lowest terms by extracting and canceling out 10.
0.75x-1800\geq \frac{1800}{10}
Multiply 1800 and \frac{1}{10} to get \frac{1800}{10}.
0.75x-1800\geq 180
Divide 1800 by 10 to get 180.
0.75x\geq 180+1800
Add 1800 to both sides.
0.75x\geq 1980
Add 180 and 1800 to get 1980.
x\geq \frac{1980}{0.75}
Divide both sides by 0.75. Since 0.75 is positive, the inequality direction remains the same.
x\geq \frac{198000}{75}
Expand \frac{1980}{0.75} by multiplying both numerator and the denominator by 100.
x\geq 2640
Divide 198000 by 75 to get 2640.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}